Salt-tolerance and Soil Improvement Mechanism of Suaeda salsa: Research Progress

Jia Lin, Liu Luyao, Wang Pengshan, Li Zhiming, Zhang Jinlong, Li Xinzheng, Tian Xiaoming, Wang Guoqiang

PDF(1092 KB)
PDF(1092 KB)
Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (3) : 73-80. DOI: 10.11924/j.issn.1000-6850.casb20191200947

Salt-tolerance and Soil Improvement Mechanism of Suaeda salsa: Research Progress

Author information +
History +

Abstract

As one of the pioneer plant in salt soil, Suaeda salsa can survive in soil with 3% salt content, which is an important germplasm resource, and has a crucial application potential in the research of plant resistance mechanism, development and utilization of salt-tolerant genes and soil ecological remediation. To fully understand the salt tolerance mechanism of Suaeda salsa and its mechanism of soil improvement, from the aspects of morphology, physiology and biochemistry and molecular level, we summarize its salt tolerance mechanism, discuss its effect on salt alkaline soil physical and chemical properties, microbial species and refinement of soil nutrients, and review the research on its role in controlling soil heavy metals and organic pollutants. Based on the study, we argue that more attention should be paid to the key salt tolerance gene of Suaeda salsa, its role in plant community succession process, and the combined mechanism of Suaeda salsa and microbial species on soil improvement.

Key words

Suaeda salsa / salt stress / salt-tolerant mechanism / mechanism of soil improvement

Cite this article

Download Citations
Jia Lin , Liu Luyao , Wang Pengshan , Li Zhiming , Zhang Jinlong , Li Xinzheng , Tian Xiaoming , Wang Guoqiang. Salt-tolerance and Soil Improvement Mechanism of Suaeda salsa: Research Progress. Chinese Agricultural Science Bulletin. 2021, 37(3): 73-80 https://doi.org/10.11924/j.issn.1000-6850.casb20191200947

References

[1]
白世红, 马风云, 侯栋, 等. 黄河三角洲植被演替过程种群生态位变化研究[J]. 中国生态农业学报, 2010,18(3):581-587.
对黄河三角洲天然湿地陆生植被和水生植被两种演替序列的种群生态位宽度和生态位重叠进行了调查研究。结果表明: 陆生植被经过翅碱蓬群落、碱蓬柽柳群落、柽柳群落、白茅群落的演替过程, 每个阶段优势种的生态位宽度都较大。翅碱蓬群落阶段优势种翅碱蓬的生态位宽度达9.99, 碱蓬柽柳群落阶段碱蓬的生态位宽度为9.72, 柽柳群落阶段柽柳的生态位宽度为9.20, 白茅群落阶段白茅的生态位宽度为9.31。水生植被的演替序列为眼子菜金鱼藻群落(沉水植物)阶段、浮萍水鳖群落(浮水植物)阶段、芦苇水烛群落(挺水植物)阶段和杞柳芦苇群落(湿生植物)阶段, 沉水植物阶段优势种眼子菜的生态位宽度为8.62, 浮水植物阶段优势种浮萍生态位宽度为9.23, 挺水植物阶段优势种芦苇的生态位宽度为8.59, 湿生植物阶段优势种杞柳生态位宽度为7.45。生态位宽度计测结果较好地对应着各种群在群落中的地位和作用, 生态位宽度在演替系列中的动态也较好地反映了种群在群落演替过程的数量动态。各演替阶段生态位重叠计算结果表明, 各阶段种群间的生态位重叠值低, 每一阶段内种群间有较高的生态位重叠
[2]
綦翠华, 韩宁, 王宝山. 不同盐处理对盐地碱蓬幼苗肉质化的影响[J]. 植物学通报, 2005,22(2):175-182.
[3]
刘彧, 丁同楼, 王宝山. 不同自然盐渍生境下盐地碱蓬叶片肉质化研究[J]. 山东师范大学学报:自然科学版, 2006,21(2):102-104.
[4]
祁通, 孙阳讯, 黄建, 等. 两种盐生植物在南北疆地区的适生性及吸盐能力[J]. 中国土壤与肥料, 2017,2(1):144-148.
[5]
赵可夫, 范海, 江行语. 盐生植物在盐渍土壤改良中的作用[J]. 应用与环境生物学报, 2002,8(1):31-35.
[6]
赵振勇, 张科, 王雷, 等. 盐生植物对重盐渍土脱盐效果[J]. 中国沙漠, 2013,33(5):1420-1425.
以新疆克拉玛依农业综合开发区新垦重盐渍土为研究对象,在滴灌条件下开展了盐生植物盐角草(Salicornia europaea)、盐地碱蓬(Suaeda salsa)和裸地(对照)处理的试验,通过测定植物地上生物量及植株和土壤中K+、Na+、Ca2+、Mg2+、Cl- 和 SO2-4含量及土壤总盐含量,评估种植盐生植物对重盐渍土盐分的影响。结果表明:灌溉条件下,盐角草和盐地碱蓬地上生物量分别为11 044.37 kg·hm-2和19 119.26 kg·hm-2,刈割后地上部分灰分盐分别为4 709.98 kg·hm-2和5 184.96 kg·hm-2;与种植期前相比,种植期后盐角草、盐地碱蓬和对照处理0~30 cm土层总盐分别下降了55.62%、32.98%和20.79%,盐角草和盐地碱蓬处理下降幅度均高于对照,30~60 cm土层盐角草和盐地碱蓬处理土壤总盐分别下降了21.82%和29.16%,而对照却上升了18.31%;盐角草和盐地碱蓬均对Na+、Cl-和SO2-4具有较强的摄取能力,尤其是对Cl-表现出更强的选择吸收倾向;盐角草和盐地碱蓬SO2-4含量基本相当,但盐角草Na+和Cl-含量分别是盐地碱蓬的2.33倍和2.22倍,盐角草对于Na+和Cl-的强积聚特征使其更适于对氯化物盐渍土的改良。在盐渍荒漠新垦地种植盐生植物,土壤脱盐效果明显。
[7]
王立艳, 潘洁, 肖辉, 等. 种植耐盐植物对滨海盐碱地土壤盐分的影响[J]. 华北农学报, 2014,29(5):226-231.
为了揭示不同耐盐植物根际土壤与对照之间的盐分差异,通过大田试验研究了田菁、苜蓿、苏丹草、碱蓬4种耐盐植物不同生长时期各土层可溶性盐分和盐分离子的测定分析,研究了4种耐盐植物根际土壤与对照土壤中的可溶性盐分和主要盐分离子的运移特征。结果表明:种植耐盐植物对表层土壤具有明显的脱盐效果,其中田菁对表层及0~80 cm土层的脱盐效果最好。10月份时耐盐植物处理表层土脱盐效果顺序为田菁>苏丹草>苜蓿>碱蓬;0~80 cm整体各处理的脱盐顺序为田菁>苜蓿>苏丹草>碱蓬。HCO3-、Cl-和SO42-均在对照的0~10 cm土层中含量最高,耐盐植物根际土壤0~10,10~20 cm土层中Na+和Cl-含量要显著低于对照土壤的含量。种植耐盐植物后,根际土壤中可溶性Ca2+含量增加,使更多的Na+被取代后将其移除到耕层以下,说明种植耐盐植物处理对Na+的移除效果比较明显。
[8]
张立宾, 徐化凌, 赵庚星. 碱蓬的耐盐能力及其对滨海盐渍土的改良效果[J]. 土壤, 2007,39(2):310-313.
[9]
Manousaki E, Kalogerakis N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils[J]. Industrial & Engineering Chemistry Research, 2001,50(2):656-660.
[10]
许崇彦, 刘宪斌, 刘占广, 等. 翅碱蓬对石油烃污染的海岸带修复的初步研究[J]. 安全与环境学报, 2007,7(1):37-39.
[11]
刘艳, 周家超, 张晓东, 等. 盐地碱蓬二型性种子及其幼苗对盐渍环境的适应性[J]. 期刊名生态学报, 2013,(17):5162-5168.
[12]
王雷, 董鸣, 黄振英. 种子异型性及其生态意义的研究进展[J]. 植物生态学报, 2010,34(5):578-590.
种子异型性是指同一植株产生不同形状或行为种子的现象。根据异型种子在植株上的生长位置, 种子异型性可划分为地上下结实性和地上种子异型性两类。此现象已在26科129属292种被子植物中报道。异型性种子植物主要分布于干旱半干旱区、荒漠和盐渍土地区等干扰强烈的环境, 在菊科和藜科中最为常见, 主要出现在一年生植物中。种子异型性在避免密集负效应、减弱同胞子代间的竞争、采取两头下注策略以适应时空异质性环境等方面具有重要的进化生态意义。该文系统总结了国内外种子异型性的研究工作, 主要内容包括: 1)种子异型性的概念、类型和种类, 2)具有异型种子植物的生境和生活型, 3)异型种子的生态学特性, 4)种子异型性的理论模型, 5)种子异型性的生态意义。在综述文献的基础上, 对今后的研究进行了展望。针对国内外的研究现状, 提出两点建议: 1)系统调查具有种子异型性现象的植物种类, 摸清其生物学特性; 2)确定研究种子异型性现象的模式植物, 从生态学、生理学和分子生物学等学科角度来研究种子异型性的个体发育机制及分子调控机理。
[13]
Song J, Wang B. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsaas a promising model[J]. Annals of Botany, 2015,115(3):541-553.
BACKGROUND: As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. SCOPE: Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered.
[14]
卫晓雅. 盐地碱蓬种子休眠与萌发及其对盐生生境的适应对策[D]. 山西临汾:山西师范大学, 2017.
[15]
卫晓雅, 合展, 赵瑞华, 等. 盐地碱蓬二型性种子的萌发和休眠及生态适应特性[J]. 西北植物学报, 2017,37(4):0758-0766.
[16]
徐燕阁. 盐地碱蓬二型种子萌发过程中抗盐机制的探讨[D]. 济南:山东师范大学, 2016.
[17]
Giehl R F H, Gruber B D, Wirén N. It's time to make changes: modulation of root system architecture by nutrient signals[J]. Journal of Experimental Botany, 2014,65(3):769-778.
Root growth and development are of outstanding importance for the plant's ability to acquire water and nutrients from different soil horizons. To cope with fluctuating nutrient availabilities, plants integrate systemic signals pertaining to their nutritional status into developmental pathways that regulate the spatial arrangement of roots. Changes in the plant nutritional status and external nutrient supply modulate root system architecture (RSA) over time and determine the degree of root plasticity which is based on variations in the number, extension, placement, and growth direction of individual components of the root system. Roots also sense the local availability of some nutrients, thereby leading to nutrient-specific modifications in RSA, that result from the integration of systemic and local signals into the root developmental programme at specific steps. An in silico analysis of nutrient-responsive genes involved in root development showed that the majority of these specifically responded to the deficiency of individual nutrients while a minority responded to more than one nutrient deficiency. Such an analysis provides an interesting starting point for the identification of the molecular players underlying the sensing and transduction of the nutrient signals that mediate changes in the development and architecture of root systems.
[18]
杨明峰, 杨超, 侯文莲, 等. NaCl和KCl胁迫对碱蓬根和地上部分生长的效应[J]. 山东师范大学学报:自然科学版, 2002,17(1):68-72.
[19]
钱兵, 顾克余, 郝明涛, 等. 盐地碱蓬的生态生物学特性及栽培技术[J]. 中国野生植物资源, 2002,21(11) 62-63.
[20]
弋良朋, 王祖伟. 盐胁迫下3种滨海盐生植物的根系生长和分布[J]. 生态学报, 2011,31(5):1195-1202.
我国广大滨海地区的盐土上发育着大量的盐生植物,这些植物的根系对维持土壤稳定性,减小风蚀和水蚀具有重要作用。在水培条件下,针对碱蓬、盐角草和盐地碱蓬3种滨海盐生植物,研究它们在不同盐浓度条件下根系分布的差异。结果表明:一定浓度的盐分可以促进3种盐生植物生长,但较高浓度的盐抑制其生长,特别是对根系生长的抑制作用更大。在同样盐浓度下,盐地碱蓬的生长最快,生物量也最大。在盐分浓度较低时,3种盐生植物的主根长和总根长都有所增加,与对照相比,盐角草增加的幅度较大,但高浓度的盐会抑制根系总长度的增加,其中盐角草较碱蓬和盐地碱蓬抑制的程度轻。盐分对3种植物的根系平均直径没有显著的影响,但有减小的趋势。在水培条件下,碱蓬和盐角草的根系上、中、下部分布的较均匀,而盐地碱蓬的根系中部比上部和下部有显著的增加,盐分对每种植物的根系的分布没有显著的影响。从根系的分布特征可以推断:盐角草比碱蓬和盐地碱蓬具有较强的抗盐性和耐瘠薄能力;碱蓬的耐盐能力较其它两种植物差,盐角草的耐盐性最强。根据3种滨海盐生植物的根系生长和分布特征,证明这3种植物的根系分属于2种功能型,碱蓬是浅根系功能型,盐角草和盐地碱蓬是深根系功能型。根系分布的参数表明3种滨海盐生植物中盐地碱蓬是用来加强土壤稳定性最好的植物。
[21]
刘晴晴. 不同生境盐地碱蓬根系拒盐机制研究[D]. 济南:山东师范大学, 2018.
[22]
弋良朋, 马健, 李彦. 荒漠盐生植物根际土壤盐分和养分特征[J]. 生态学报, 2007,27(9):3565-3571.
中国西北地区是我国干旱、盐碱化土壤分布面积较广、土壤积盐较重的地区,这里发育着丰富的盐生植物。目前对于干旱荒漠区盐生植物根际特征的研究相对较少,而不同盐生植物的根际特征对于研究盐生植物适应盐渍环境的机制有着重要意义。本研究利采用盆栽根袋法对7种不同类型的荒漠盐生植物的根际盐分和养分特征进行了初步探索。结果表明:盐分在盐生植物根际发生富集,稀盐盐生植物和泌盐盐生植物根际土壤中总盐和8种主要盐分离子的含量都有所增加,而在拒盐盐生植物根际中增加不显著,其中Cl-和Na+的富集程度相对其它6种离子的富集程度要高。稀盐盐生植物和泌盐盐生植物根际土中的SO42-/ Cl-比土体有显著的降低,表明在稀盐盐生植物和泌盐盐生植物根际土壤中Cl-的富集程度比SO42-高, 拒盐盐生植物根际土盐分SO42/ Cl-比略有提高。7种盐生植物根际土中的Na+/ K+,Na+/ Ca2+,Na+/ Mg2+比均较土体有显著的增加,芦苇根际土中的增加最小。在所有研究植物中,根际土壤中全N含量比土体的含量高,但全P和全K含量却比土体的含量低;根际土壤中有效态养分的变化则与全态相反,根际土壤中的有效N含量比土体中的都显著降低,除芦苇外,其他六种盐生植物根际土壤中有效P和有效K的含量都高于土体,但有效P的富集不及有效K富集的程度高。在研究的七种植物中,钠猪毛菜根际土壤的有效N亏缺量最高,有效P和速效K富集也最少。7种植物,尤其是稀盐盐生植物和泌盐盐生植物的地上部分的主要盐离子含量比地下部分高,如Cl-、Na+、Ca2+和K+,在根际富集程度最高的Cl-和Na+,在植株的地上部分也增加的最多。
[23]
冯中涛, 王殿, 袁芳, 等. 真盐生植物盐地碱蓬根系边缘细胞在耐盐中的作用初探[J]. 植物生理学报, 2011,47(10):976-982.
[24]
姚立蓉. 盐生草根系对盐分吸收机理的研究[D]. 兰州:甘肃农业大学, 2018.
[25]
Flowers T J, Colmer T D. Salinity tolerance in halophytes[J]. New phytologist, 2008,179(4):945-963.
[26]
管博, 栗云召, 于君宝, 等. 不同温度及盐碱环境下盐地碱蓬的萌发策略[J]. 生态学杂志, 2011(7):1411-1416.
为了研究黄河三角洲优势种盐地碱蓬在不同胁迫环境条件下的萌发策略,分别在不同温度、盐度、碱度以及海水原溶液条件下,进行了室内萌发实验,并且测量了其幼苗体内的Na+和K+含量。结果表明,盐地碱蓬种子发芽所需要的积温和最低温度分别为24.57 ℃·d和0.62 ℃,最适发芽温度为20 ℃~35 ℃,在温度5 ℃~40 ℃下均表现出较高的发芽率而且5 ℃~35 ℃下发芽速度随温度升高而显著增加。盐地碱蓬具有较高的耐盐性,当盐浓度达到500 mmol·L-1时,发芽率均高于50%,并且在100%海水溶液浓度下发芽率也能达到38%,高盐条件下未萌发的种子转移到淡水中,均表现出较高的复萌率。盐地碱蓬幼苗体内Na+含量随盐度(NaCl溶液浓度)升高而显著增加,而K+含量在该盐度下差异不显著;幼苗体内Na+、K+含量在高碱度(200和300 mmol·L-1 NaHCO3)中均显著低于其在低碱度(100 mmol·L-1 NaHCO3溶液)中的含量,说明碱胁迫对幼苗生长产生了显著性影响;Na+、K+含量均随着海水溶液浓度增加而显著增加。因此,盐地碱蓬种子萌发的广温性、高耐盐性、高盐环境中的种子高存活率以及幼苗的较强的耐盐能力是盐地碱蓬种群在黄河三角洲适应滨海盐碱湿地复杂环境的主要生存策略。
[27]
Dodd G L, Donovan L A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs[J]. American Journal of Botany, 1999,86(8):1146-1153.
We tested expectations that two desert shrubs would differ in germination and seedling relative growth rate (RGR) responses to Na and Psi(s) stress. The study species, Chrysothamnus nauseosus ssp. consimilis and Sarcobatus vermiculatus (hereafter referred to by genus), differ in their distribution along salinity gradients, with Chrysothamnus inhabiting only less saline areas. In growth chamber studies, declining Psi(s) (-0.82 to -2.71 MPa) inhibited germination of both species, and Chrysothamnus was less tolerant of Psi(s) stress than Sarcobatus. Germination fell below 10% for Chrysothamnus at -1.64 MPa (NaCl and PEG), and for Sarcobatus at -2.4 MPa PEG. Neither species exhibited ion toxicity. There was substantial ion enhancement for Sarcobatus in lower Psi(s), allowing for 40% germination in -2.71 MPa NaCl. For seedling RGR, species were not different at -0.29 or -0.82 MPa (0 and 100 mmol/L NaCl, respectively), but Chrysothamnus RGR declined substantially at -1.3 MPa (200 mmol/L NaCl). The greater stress tolerance of Sarcobatus was not associated with a lower RGR under nonsaline conditions. Species differences in seed and seedling Psi(s) stress tolerance probably contribute to the restricted distribution of Chrysothamnus to less saline areas. The Na uptake of Sarcobatus seedlings enhances its ability to deal with declining Psi(s) and establish in more saline areas.
[28]
段德玉, 刘小京, 冯凤莲, 等. 不同盐分胁迫对盐地碱蓬种子萌发的效应[J]. 中国农学通报, 2003,19(6):168-172.
用不同浓度的单盐NaCl和混合盐溶液(2.9g/L,5.9g/L,11.7g/L,17.6g/L,23.4g/L,35.1g/L)处理盐生植物盐地碱蓬种子,以研究不同盐分对盐生植物种子萌发的影响。结果表明,随着盐浓度的增加,种子的萌发率降低,萌发率与处理盐浓度呈显著的负相关关系,NaCl和混合盐溶液中相关系数分别为0.96和0.94;盐地碱蓬种子在蒸馏水中萌发率最高,并且单盐NaCl对种子萌发的抑制作用大于混合盐溶液;未发芽的种子转至蒸馏水中后最终萌发率都达到了对照种子的85%以上,表明盐胁迫下种子仍保持较高的萌发潜力;种子萌发恢复率与处理盐浓度之间呈正相关关系。
[29]
李爱卿, 赵晓东, 冯玉兰, 等. 不同浓度NaCl处理对盐地碱蓬萌发及生长的影响[J]. 西北民族大学学报, 2017,38(4):41-45.
[30]
李劲松, 郭凯, 李晓光, 等. 模拟干旱和盐碱胁迫对碱蓬、盐地碱蓬种子萌发的影响[J]. 中国生态农业学报, 2018,26(7):1011-1018.
[31]
李存桢, 刘小京, 杨艳敏, 等. 盐胁迫对盐地碱蓬种子萌发及幼苗生长的影响[J]. 中国农学通报, 2005,21(5):209-212.
用不同浓度(0、0.2、0.4、0.6、1.2、1.8、2.8、3.6g/100ml)的盐溶液(土壤溶液、Na2SO4及NaCl)处理盐地碱蓬种子,以研究其在盐胁迫下的萌发及萌发后的生长情况,并观察胁迫解除后种子的反应,为其栽培利用提供理论依据。实验结果表明,盐地碱蓬种子的萌发对盐渍生境的适应性很强,能耐受较高的盐胁迫。对其种子萌发的胁迫作用是NaCl>土壤溶液>Na2SO4。随着盐浓度的升高,种子的萌发率呈现不同程度的降低。盐胁迫解除后,盐地碱蓬种子仍具有较高的萌发力,发芽速度和整齐度提高。幼根和幼芽对不同种类盐胁迫表现出不同的反应,盐浓度对根的影响较大。经盐锻炼之后,盐地碱蓬幼苗恢复生长的能力提高。
[32]
管博, 栗云召, 于君宝, 等. 不同温度及盐碱环境下盐地碱蓬的萌发策略[J]. 生态学杂志, 2011,30(7):1411-1416.
为了研究黄河三角洲优势种盐地碱蓬在不同胁迫环境条件下的萌发策略,分别在不同温度、盐度、碱度以及海水原溶液条件下,进行了室内萌发实验,并且测量了其幼苗体内的Na+和K+含量。结果表明,盐地碱蓬种子发芽所需要的积温和最低温度分别为24.57 ℃·d和0.62 ℃,最适发芽温度为20 ℃~35 ℃,在温度5 ℃~40 ℃下均表现出较高的发芽率而且5 ℃~35 ℃下发芽速度随温度升高而显著增加。盐地碱蓬具有较高的耐盐性,当盐浓度达到500 mmol·L-1时,发芽率均高于50%,并且在100%海水溶液浓度下发芽率也能达到38%,高盐条件下未萌发的种子转移到淡水中,均表现出较高的复萌率。盐地碱蓬幼苗体内Na+含量随盐度(NaCl溶液浓度)升高而显著增加,而K+含量在该盐度下差异不显著;幼苗体内Na+、K+含量在高碱度(200和300 mmol·L-1 NaHCO3)中均显著低于其在低碱度(100 mmol·L-1 NaHCO3溶液)中的含量,说明碱胁迫对幼苗生长产生了显著性影响;Na+、K+含量均随着海水溶液浓度增加而显著增加。因此,盐地碱蓬种子萌发的广温性、高耐盐性、高盐环境中的种子高存活率以及幼苗的较强的耐盐能力是盐地碱蓬种群在黄河三角洲适应滨海盐碱湿地复杂环境的主要生存策略。
[33]
代莉慧, 蔡禄, 吴金华, 等. 盐碱胁迫对盐生植物种子萌发的影响[J]. 干旱地区农业研究, 2012,30(6) 134-138.
[34]
刘金萍, 高奔, 李欣, 等. 盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响[J]. 生态学报, 2010,30(20):5485-5490.
研究了盐旱互作对潮间带和盐碱地生境盐地碱蓬棕色种子萌发、地上部生长和离子积累的影响。不同盐浓度预处理后,未萌发的种子风干后复水,其萌发率与对照相比没有降低,说明两种生境盐地碱蓬种子萌发期间都耐干湿交替。400 mmol/L NaCl溶液浇灌的潮间带生境盐地碱蓬幼苗在第3次干旱处理后萎蔫幼苗的百分比高于盐碱地生境的,而复水后正常幼苗的百分比却相反。400 mmol/L NaCl溶液处理下,第3次干旱处理复水后,盐碱地生境盐地碱蓬幼苗地上部离子含量(主要是Na+ 和Cl-)高于潮间带生境的。表明在干旱情况下,盐碱地生境盐地碱蓬幼苗能积累更多的无机离子,降低渗透势,提高根系吸收水分的能力。上述结果说明,盐碱地生境盐地碱蓬幼苗较潮间带生境盐地碱蓬幼苗更耐盐与干旱的交互作用。
[35]
郭建荣, 郑聪聪, 李艳迪, 等. NaCl处理对真盐生植物盐地碱蓬根系特征及活力的影响[J]. 植物生理学报, 2017,53(1):63-70.
[36]
郭建荣, 王宝山. NaCl处理对盐地碱蓬开花及Na+、K+含量的影响[J]. 植物生理学报, 2014,50(6):861-866.
[37]
李欣. 盐地碱蓬种子发育过程中对盐渍生境的适应性[D]. 济南:山东师范大学, 2012.
[38]
Sahi C, Singh A, Blumwald, et al. Beyond osmolytes and transporters: novel plant salt-stress tolerance- related genes from transcriptional profiling data[J]. Physiologia Plantarum, 2006,127(1):1-9.
[39]
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Reviews of Plant Biology, 2008,59:651-681.
[40]
Jin H, Dong D, Yang Q, et al. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing[J]. Plos One, 2016,11(3):e0150504.
BACKGROUND: Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. RESULTS: Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. CONCLUSIONS: This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted.
[41]
Bajji M, Kinet JM, Lutts S. Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae)[J]. Canadian Journal of Botany, 2002,80(3):297-304.
[42]
Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual Review of Plant Physiology, 1980,31:149-190.
[43]
代莉慧. 盐地碱蓬种子萌发过程中耐盐生理指标测定及基因表达分析[D]. 内蒙古包头:内蒙古科技大学, 2013.
[44]
陈文翰, 蔡恒江, 赵玥茹, 等. 盐胁迫对翅碱蓬种子萌发及幼苗渗透调节物质的影响[J]. 安徽农业科学, 2018,46(16):65-67.
[45]
苏芳莉, 孙旭, 孙权, 等. 湿地翅碱蓬生长及渗透调节物质对盐度的响应[J]. 生态学杂志, 2018,37(7):1997-2002.
[46]
Lu C, Qiu N, Wang B, Zhang J. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa[J]. Journal of Experimental Botany, 2003,54(383):851-860.
Photosynthetic gas exchange, modulated chlorophyll fluorescence, rapid fluorescence induction kinetics, and the polyphasic fluorescence transients were used to evaluate PSII photochemistry in the halophyte Suaeda salsa exposed to a combination of high salinity (100-400 mM NaCl) and heat stress (35-47.5 degrees C, air temperature). CO(2) assimilation rate increased slightly with increasing salt concentration up to 300 mM NaCl and showed no decrease even at 400 mM NaCl. Salinity treatment showed neither effects on the maximal efficiency of PSII photochemistry (F(v)/F(m)), the rapid fluorescence induction kinetics, and the polyphasic fluorescence transients in dark-adapted leaves, nor effects on the efficiency of excitation energy capture by open PSII reaction centres (F(v)'/F(m)') and the actual PSII effciency (Phi(PSII)), photochemical quenching (q(P)), and non-photochemical quenching (q(N)) in light-adapted leaves. The results indicate that high salinity had no effects on PSII photochemistry either in a dark-adapted state or in a light-adapted state. With increasing temperature, CO(2) assimilation rate decreased significantly and no net CO(2) assimilation was observed at 47.5 degrees C. Salinity treatment had no effect on the response of CO(2) assimilation to high temperature when temperature was below 40 degrees C. At 45 degrees C, CO(2) assimilation rate in control plants decreased to zero, but the salt-adapted plants still maintained some CO(2) assimilation capacity. On the other hand, the responses of PSII photochemistry to heat stress was modified by salinity treatment. When temperature was above 35 degrees C, the declines in F(v)/F(m), Phi(PSII), F(v)'/F(m)', and q(P) were smaller in salt-adapted leaves compared to control leaves. This increased thermostability was independent of the degree of salinity, since no significant changes in the above-described fluorescence parameters were observed among the plants treated with different concentrations of NaCl. During heat stress, a very clear K step as a specific indicator of damage to the O(2)-evolving complex in the polyphasic fluorescence transients appeared in control plants, but did not get pronounced in salt-adapted plants. In addition, a greater increase in the ratio (F(i)-F(o))/(F(p)-F(o)) which is an expression of the proportion of the Q(B)-non-reducing PSII centres was observed in control plants rather than in salt-adapted plants. The results suggest that the increased thermostability of PSII seems to be associated with the increased resistance of the O(2)-evolving complex and the reaction centres of PSII to high temperature.
[47]
Fukusaki E, Kobayashi A. Plant metabolomics: potential for practical operation[J]. Journal of Bioscience and Bioengineering, 2005,100(4):347-354.
摘要
In the postgenomic era, metabolomics is expected to be the newest useful omics science for functional genomics. However, in plant science, the present metabolomics technology cannot be considered a universal tool to perfectly elucidate perturbations imposed on sample plants although this is desired by plant physiologists. Despite it being an immature technology, metabolomics has already been used as a powerful tool for precise phenotyping, particularly for industrial application. Metabolomics is the best technology for the analysis of large mutant or transgenic libraries of model experimental plants, such as Arabidopsis, rice, etc. Here, we review the applications and technical problems of metabolomics. We also suggest the potential of metabolomics for plant post-genomic science.
[48]
Qiang L, Jie S. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species[J]. BMC Plant Biology, 2019,19:388.
摘要
BACKGROUND: Suaeda salsa L. (S. salsa) is an annual euhalophyte with high salt tolerance and high value as an oil crop, traditional Chinese medicine and vegetable. However, there are few comprehensive studies on the metabolomics of S. salsa under saline conditions. RESULTS: Seedlings of S. salsa were cultured with 0, 200 and 500 mM NaCl for two days. Then, widely targeted metabolites were detected with ultra performance liquid chromatography and tandem mass spectrometry. A total of 639 metabolites were annotated. Among these, 253 metabolites were differential metabolites. Salt treatment increased the content of certain metabolites, such as nucleotide and its derivates, organic acids, the content of amino acids, lipids such as alpha-linolenic acid, and certain antioxidants such as quercetin. These substances may be correlated to osmotic tolerance, increased antioxidant activity, and medical and nutritional value in the species. CONCLUSION: This study comprehensively analyzed the metabolic response of S. salsa under salinity from the perspective of omics, and provides an important theoretical basis for understanding salt tolerance and evaluating nutritional value in the species.
[49]
Lv S L, Jiang P, Chen X Y, et al. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea[J]. Plant Physiology and Biochemistry, 2012,51:47-52.
摘要
Euhalophyte Salicornia europaea L., one of the most salt-tolerant plant species in the world, can tolerate more than 1000 mM NaCl. To study the salt tolerance mechanism of this plant, the effects of different NaCl concentrations on plant growth, as well as Na(+) accumulation and distribution at organ, tissue, and subcellular levels, were investigated. Optimal growth and an improved photosynthetic rate were observed with the plant treated with 200-400 mM NaCl. The Na(+) content in the shoots was considerably higher than that in the roots of S. europaea. The Na(+) in S. europaea cells may act as an effective osmotic adjuster to maintain cell turgor, promoting photosynthetic competence and plant growth. The results from the SEM-X-ray and TEM-X-ray microanalyses demonstrate that Na(+) was compartmentalized predominantly into the cell vacuoles of shoot endodermis tissues. Accordingly, the transcript amounts of SeNHX1, SeVHA-A, and SeVP1 increased significantly with increased NaCl concentration, suggesting their important roles in Na(+) sequestration into the vacuoles. Therefore, a multiple sodium compartmentalization mechanism is proposed to enhance further the salt tolerance of S. europaea.
[50]
张晓霞. 碱篷SsNHX1基因转化玉米的耐盐性研究[D]. 成都:四川农业大学, 2013.
[51]
Li P H, Wang Z L, Zhang H, et al. Cloning and expression ananysis of the B subunit of V-H+-ATPase in the leaves of Suaeda salsa under NaCl stress[J]. Acta Botanica Sinica, 2004,46:93-99.
[52]
Wang H L, Wang L, Tian C Y, et al. Germination dimorphism in Suaeda acuminate : a new combination of dormancy types for heteromorphic seeds[J]. South African Journal of Botany, 2012,78:270-275.
[53]
曹晟阳. 高盐胁迫下翅碱蓬的全转录组研究[D]. 辽宁大连:大连海洋大学, 2018.
[54]
谢欠影, 曹晟阳, 赵晨阳, 等. 翅碱蓬响应高盐胁迫的分子机制研究[J]. 大连海洋大学学报, 2019,34(02) 160-167.
[55]
Guo S M, Tan Y, Chu H J, et al. Transcriptome sequencing revealed molecular mechanisms underlying tolerance of Suaeda salsa to saline stress[J]. Plos One, 2019,14(7) e0219979.
摘要
The halophyte Suaeda salsa displayed strong resistance to salinity. Up to date, molecular mechanisms underlying tolerance of S. salsa to salinity have not been well understood. In the present study, S. salsa seedlings were treated with 30 per thousand salinity and then leaves and roots were subjected to Illumina sequencing. Compared with the control, 68,599 and 77,250 unigenes were significantly differentially expressed in leaves and roots in saline treatment, respectively. KEGG enrichment analyses indicated that photosynthesis process, carbohydrate, lipid and amino acid metabolisms were all downregulated in saline treatment, which should inhibit growth of S. salsa. Expression levels of Na+/H+ exchanger, V-H+ ATPase, choline monooxygenase, potassium and chloride channels were upregulated in saline treatment, which could relieve reduce over-accumulation of Na+ and Cl-. Fe-SOD, glutathione, L-ascorbate and flavonoids function as antioxidants in plants. Genes in relation to them were all upregulated, suggesting that S. salsa initiated various antioxidant mechanisms to tolerate high salinity. Besides, plant hormones, especially auxin, ethylene and jasmonic acid signaling transduction pathways were all upregulated in response to saline treatment, which were important to gene regulations of ion transportation and antioxidation. These changes might comprehensively contribute to tolerance of S. salsa to salinity. Overall, the present study provided new insights to understand the mechanisms underlying tolerance to salinity in halophytes.
[56]
Qadir M, Oster J D, Schubert S, et al. Phytoremediation of sodic and saline-sodic soils[J]. Advances in Agronomy, 2007,96:197-247.
[57]
Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops[J]. Annals of Botany, 2013,112(7):1209-1221.
BACKGROUND: Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. SCOPE AND CONCLUSIONS: This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.
[58]
田锐. 翅碱蓬根系微生物群落多样性及其对降油细菌的负载性能研究[D]. 辽宁大连:大连海洋大学, 2013.
[59]
侯贺贺. 黄河三角洲盐碱地生物措施改良效果研究[D]. 山东泰安:山东农业大学, 2014.
[60]
邹桂梅, 苏德荣, 黄明勇, 等. 人工种植盐地碱蓬改良吹填土的试验研究[J]. 草业科学, 2010,27(4):51-56.
为解决吹填土基本理化性质差的问题,研究以盐地碱蓬Suaeda salsa为材料,研究了它对吹填土理化性质的改良效果。试验分4个小区,完全随机区组排列,1年后分05、520和2040 cm三层采样测定土壤的基本理化性质。以盐地碱蓬周围裸地土壤为对照。结果表明,种植盐地碱蓬能显著增加各层土壤的总孔隙度,显著减少各层土壤容重及提高土壤的含水量,且土壤表层的含水量增加的最为明显;显著降低各层土壤盐分,盐地碱蓬种植地从表层、中层到深层脱盐率依次为50.54%、43.74%和27.23%,而对照地各层盐分反而增加;土壤有机质、碱解氮、有效磷、速效钾分别增加了17.55%、5.03%、20.54%和1.49%;显著增加各层土壤细菌和放线菌的数量,而真菌的数量只中层和深层才显著增加。
[61]
杨策, 陈环宇, 李劲松, 等. 盐地碱蓬生长对滨海重盐碱地的改土效应[J]. 中国生态农业学报:中英文, 2019,27(10):1578-1586.
[62]
史文娟, 杨军强, 马媛. 旱区盐碱地盐生植物改良研究动态与分析[J]. 水资源与水工程学报, 2015,26(5):229-234.
[63]
吕殿青, 邵明安, 刘春平. 容重对土壤饱和水分运动参数的影响[J]. 水土保持学报, 2006,20(3):154-157.
[64]
马志勇. 灌溉淋洗条件下土壤盐分动态变化规律探究[J]. 水利科技与经济, 2016,22(9):40-43.
[65]
迟春明, 王志春. 苏打碱土盐分淋洗与饱和导水率的关系[J]. 土壤学报, 2010,47(2):374-377.
[66]
Hasanuzzaman M, Nahar K, Alam M. Potential use of halophytes to remediate saline soils[J]. Biomed Research International, 2014: 589341.
[67]
林学政, 陈靠山, 何培青, 等. 种植盐地碱蓬改良滨海盐渍土对土壤微生物区系的影响[J]. 生态学报, 2006,26(3):801-807.
利用盐生植物盐地碱蓬对天津河口滨海盐碱地进行生物修复,研究了其对土壤微生物区系的影响。结果表明,种植区碱蓬根系土壤的可溶性盐分与对照土壤相比下降了41 %(重量法)和37 %(电导法);根系土壤的微生物数量明显增加,其中细菌、放线菌和真菌分别较对照增加了2.3倍、4.3倍和71倍,与对照相比均为显著性差异。根系微生物的耐盐性结果显示,随着土壤盐分的降低,根系微生物生长的最适盐度也随之降低,耐盐性较低的微生物种群已逐渐成为优势种群。系统发育分析表明,枯草杆菌属成为植物修复后土壤中的优势种群。
[68]
弋良朋, 马健, 李彦. 荒漠盐生植物根际土壤酶活性的变化[J]. 中国生态农业学报, 2009,17(3):500-505.
利用根袋法研究了荒漠盐土和灌耕灰漠土中6种不同荒漠盐生植物根际养分和酶活性特征。结果表明: 两种土壤中, 根际土全氮含量比非根际土高, 但全磷却比非根际土低。根际土有效态养分的变化则与全态相反, 6种植物的根际土有效氮含量均显著低于非根际土, 除芦苇外, 根际土有效磷含量均高于非根际土。6种植物中, 钠猪毛菜根际土有效氮亏缺最高, 有效磷富集也最少。分析测定了根际土和非根际土转化酶、蛋白酶、过氧化氢酶、脲酶、中性磷酸酶和碱性磷酸酶活性及其与土壤养分的关系。结果表明: 过氧化氢酶、脲酶和蛋白酶在两种土壤的植物根际表现出相反的变化, 荒漠盐土中, 根际土3种酶的活性均高于非根际土; 而灌 耕灰漠土的根际土3种酶活性均低于非根际土。荒漠盐土碱性磷酸酶、过氧化氢酶和转化酶与几种主要养分含量有很强的相关性, 较好地体现了荒漠盐土根际的养分状况, 也说明盐生植物对荒漠盐土酶活性有较大的 影响。
[69]
陈果, 王景瑶, 李聚揆. 石油烃污染土壤修复技术的研究进展[J]. 应用化工, 2018,5:1014-1018.
[70]
马艺文, 齐月, 李俊生, 等. 石油污染胁迫下碱蓬和翅碱蓬萌发生长的响应特征[J]. 应用与环境生物学报, 2019,25(2):0313-0320.
[71]
许崇彦, 刘宪斌, 刘占广, 等. 翅碱蓬对石油烃污染的海岸带修复的初步研究[J]. 安全与环境学报, 2007,7(1) 37-39.
[72]
刘欢, 何洁, 樊晓茹, 等. 原油污染土壤翅碱蓬根际效应和降解的研究[J]. 大连海洋大学学报, 2019,2:191-197.
[73]
李作扬, 田锐, 于子超, 等. 翅碱蓬根系降油细菌的筛选及其生长特性研究[J]. 大连海洋大学学报, 2016,2:30-36.
[74]
高世珍, 赵兴茹, 崔世茂, 等. 典型持久性有机污染物在翅碱蓬中的分布特征[J]. 环境科学, 2010,31(10):2456-2461.
[75]
Manousaki E, Kalogerakis N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils[J]. Industrial & Engineering Chemistry Research, 2011,50(2):656-660.
[76]
Fangli W, Ningning S. Salinity-induced alterations in plant growth, antioxidant enzyme activities, and lead transportation and accumulation in Suaeda salsa: implications for phytoremediation[J]. Ecotoxicology, 2019,28(5):520-527.
Halophytes have been considered promising candidates for accumulating heavy metals from saline soils; however, little information has been given on plant physiological responses and heavy metal transportation and accumulation in halophytes that grow in heavy metal-polluted saline soils. This study hypothesized that salinity or heavy metals could induce alterations in plant growth, antioxidant enzyme activities and accumulation and transportation of heavy metals or sodium (Na) in Suaeda salsa. Pot experiments were conducted to test the above hypothesis. Lead (Pb) was selected as the representative heavy metal, and NaCl was added to simulate the Pb-polluted saline soil. The results showed that 0.5% NaCl addition alleviated the inhibition of plant growth under moderate Pb stress (35 and 100 mg kg(-1) Pb levels), while the phytotoxicity on plants was magnified by 1.0% NaCl addition. NaCl weakened the oxidative stress in Pb-treated plants by increasing the activity levels of antioxidative enzymes (dismutase (SOD), peroxidase (POD) and catalase (CAT)). At all Pb levels, as the NaCl addition increased, significant increases were observed in the concentration of Na. The 100 mg kg(-1) Pb induced a greater increase in Na concentrations than the 35 mg kg(-1) Pb did, while the latter induced a greater increase than the 300 mg kg(-1) Pb did. NaCl improved Pb translocation factor and its accumulation in Suaeda salsa under Pb stress, indicating that NaCl improves Pb uptake and translocation from roots to shoots and enhances the phytoextraction of Pb. Compared with the 0.1% NaCl treatment, the 0.5 and 1.0% NaCl treatments increased the concentrations of bioavailable Pb in the rhizosphere by 15.0-19.2 and 28.6-35.1%, respectively, indicating the contribution of salinity in producing more available Pb for plant uptake. Moderate salinity may be profitable for Pb transportation and accumulation in plants when there are positive effects on plant growth, antioxidant enzyme activities and Pb availability. These facts suggest that the halophyte Suaeda salsa may be exploited to remediate heavy metal-contaminated saline soils.
[77]
何洁高, 钰婷, 王晓庆, 等. 翅碱蓬对重金属吸收的研究[A]. 中国环境科学学会学术年会论文集(第二卷)[C]. 2011.
[78]
刘欢. 翅碱蓬根系分泌物对细菌去除Cd的作用影响[D]. 辽宁大连:大连海洋大学, 2016.

RIGHTS & PERMISSIONS

Copyright reserved © 2020. Chinese Agricultural Association Bulletin. All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Agricultural Association or the Editorial Board, unless this is clearly specified.
Share on Mendeley
PDF(1092 KB)

Accesses

Citation

Detail

Sections
Recommended

/