Effects of Acetoin Addition on 2,3-butanediol Production by Saccharomyces cerevisiae W5/W141

Yang Zhiyu, Tong Tianqi, Liu Lei, Ping Wenxiang, Ge Jingping

PDF(1407 KB)
PDF(1407 KB)
Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (23) : 19-25. DOI: 10.11924/j.issn.1000-6850.casb20190500192

Effects of Acetoin Addition on 2,3-butanediol Production by Saccharomyces cerevisiae W5/W141

Author information +
History +

Abstract

To obtain a 2,3-butanediol (2,3-BD) producing strain with good performance, different concentrations of acetoin were added into two strains of Saccharomyces cerevisiae (W5/W141) producing 2,3-BD, and the changes of 2,3-BD, ethanol and glycerol production with fermentation time were determined. The optimum acetoin concentration of S. cerevisiae W5 was 12 g/L, and the concentration of 2,3-BD reached the maximum at 72 h, it was 2.54±0.03 g/L, and the conversion of glycerol and ethanol decreased by 17.6% and 23.6% respectively compared with that without addition. The optimum acetoin concentration of S. cerevisiae W 141 was 10 g/L, and the concentration of 2,3-BD reached the maximum at 72 h, it was 1.71±0.02 g/L, and the conversion of glycerol and ethanol decreased by 57.1% and 16.7% respectively. By comparison, S. cerevisiae W5 was selected as the optimum strain to provide new resources for the production of 2,3-BD by microbial fermentation.

Key words

2,3-butanediol / Saccharomyces cerevisiae / acetoin / ethanol / glycerol

Cite this article

Download Citations
Yang Zhiyu , Tong Tianqi , Liu Lei , Ping Wenxiang , Ge Jingping. Effects of Acetoin Addition on 2,3-butanediol Production by Saccharomyces cerevisiae W5/W141. Chinese Agricultural Science Bulletin. 2020, 36(23): 19-25 https://doi.org/10.11924/j.issn.1000-6850.casb20190500192

0 引言

在1938年克隆技术的设想被提出以后,随着克隆羊“多莉”的出生,山羊[1,2]、牛[3]、猪[4]、小鼠[5]、马[6]、骆驼[7]、马鹿[8]等多种动物通过体细胞核移植技术获得了健康成活的后代。体细胞克隆技术是利用供体动物细胞的DNA作为基因表达的模板,可以使克隆后代与供体动物的遗传性状完全相同,从而使动物品种的优良性状得以复制,所以利用该技术进行良种动物遗传资源的保护和扩繁产业前景广阔。体细胞克隆技术应用于牛的研究也越来越多,荷斯坦奶牛是目前世界上产奶量最高、饲养数量最多的奶牛品种,关乎奶牛养殖户和奶牛养殖生产厂家的经济效益。因此研究荷斯坦种公牛的重要性不言而喻,目前,在体细胞克隆荷斯坦奶牛上的研究仍然不多。
然而克隆动物仍存在很多问题,克隆的效率很低,仅能达到1%~3%[8],表现为妊娠率低、胎儿流产率高以及成活率较低等。而且成活的克隆动物也同样存在各种表型异常,例如心、肝、肺和胎盘等器官发育异常、畸形,免疫器官病理性缺陷等,就其原因仍在研究[9,10,11,12,13,14]。为了探究克隆荷斯坦奶牛出生后死亡的原因,本研究对出生后30 min死亡的克隆荷斯坦公牛和自然繁殖的荷斯坦公牛的尸体进行了详细的组织器官病理学的比较,以期从组织器官形态学的角度找出克隆荷斯坦牛死亡的原因,给荷斯坦牛克隆的理论和实践应用提供进一步的参考。

1 材料与方法

1.1 材料

1.1.1 试剂、仪器 全封闭组织脱水机(VIP-5Jr-J2型),自动组织包埋机(TEC5EME-2型),平推式切片机(CRM-440型),组织标本伸展水槽(PS-M型),电热恒温烤片机(Slidewarmer)等均采购自日本樱花检验仪器株式会社;光学显微镜(MODEL U-MDOB3 OLYMPUS CORPORATION),10%中性福尔马林、各浓度乙醇、乙醇二甲苯、二甲苯、石蜡、苏木素色精、伊红等由内蒙古赛科星家畜种业与繁育生物技术研究院有限公司提供。
1.1.2 材料来源 克隆出生后30 min夭折的1头克隆荷斯坦公犊由内蒙古赛科星繁育生物技术(集团)股份有限公司提供,自然繁殖出生的荷斯坦公牛犊由旭日牧场提供。
1.1.3 采集组织样品 将刚死掉的克隆荷斯坦牛立刻进行解剖,详细观察各组织器官的变化,并取心肌、肺脏、脾脏、大脑、小脑、胸腺、肝脏、睾丸、肌肉、淋巴结、肾脏以及消化系统等组织器官,利用10%甲醛进行固定,并送至内蒙古农业大学动物医学院病理研究室进行常规石蜡切片的制备和分析。

1.2 石蜡切片制作方法

将一块病理组织制成一张病理切片标本,须经过一系列的过程,其主要程序为取材→固定→冲洗→脱水→透明→浸蜡→包埋→切片→染色→封固。
1.2.1 取材与固定 把器官组织用PBS清洗干净,用手术剪将鞘膜去掉。从不同部位取1.0 cm×1.0 cm×0.5 cm大小的组织块放入盛有10%甲醛的50 mL离心管中。用记号笔标记名称,带回实验室。将组织移入盛有4%甲醛的500 mL蓝盖瓶中,加入组织块体积20倍的10%甲醛固定处理24 h以上。
1.2.2 组织块修剪 固定后的组织有一定硬度后切取平整,修掉一些不规则的部位,修剪成长方体或正方体。修剪后的组织块大小为0.5 cm × 0.5 cm × 0.2 cm为宜,放入塑料包埋盒中,把盖子盖好。
1.2.3 水洗 将修剪后包埋盒中的组织置于水龙头下用自来水流水冲洗,目的为吸取渗入组织中的固定液,以免影响对组织结构的观察。
1.2.4 脱水、透明与浸蜡 将组织块放入装有50%、75%、85%、95%、100%不同浓度梯度的乙醇处理液中,在装有二甲苯和液体蜡的脱水机中进行脱水、透明和浸蜡。各步骤的处理时间均为1 h。
1.2.5 包埋 将塑料包埋盒中的组织块和金属包埋盒放入盛有液体蜡的包埋机中,从塑料包埋盒取出组织块放入金属包埋盒,把组织块压平。同时放入液体蜡,移到包埋盒冷却区进行冷却。
1.2.6 切片 蜡块冷却变硬后,即可切片。切片的厚度为3 μm。挑取完整且无破裂的切片放置于干的载玻片上,滴加几滴20%乙醇将切片初步展开,之后将切片缓慢放入40℃恒温水浴锅中使切片彻底展开。选择展开状态良好的载玻片,42℃烘干。
1.2.7 脱蜡、水化及HE染色 将切片放入盛有二甲苯,梯度乙醇(100%、95%、85%、75%、50%),苏木精-伊红染液的染色机中染色70 min。
1.2.8 脱水、透明和封片 脱水和透明处理步骤与1.2.4相同,并用中性树胶封片。

2 结果与分析

2.1 克隆牛病理组织学变化

观察结果见图1,出生30 min夭折的克隆牛大脑皮质分层明显,毛细血管周隙增宽,并有轻度的水肿现象;小脑剖面上的树形结构不是很明显,神经纤维层、细胞层溶解并形成空泡,蒲肯野细胞层和颗粒层细胞形成空隙层明显;肺部结构清晰,有轻度淤血;肝脏的肝细胞明显肿大,出现脂肪轻度变性;肾脏的髓质部淤血明显,肾小管上皮细胞出现变性;心肌的肌纤维间空隙增大,结构无明显的变化,纤维色彩深浅一致;骨骼肌的肌纤维排列整齐,肌纤维间隙明显,空泡变性,出现轻度的水肿现象,可能导致该克隆牛犊肌肉无力且功能不全;睾丸曲精细管结构清晰,曲精细管间隙增宽,并轻度水肿和淤血;淋巴结皮髓质界限不分明,淋巴小结细胞较稀疏,生发中心不明显,淋巴窦细胞较少;脾脏的中央动脉周围细胞致密,髓索髓窦明显,红细胞较少,可能该克隆牛的造血功能不完善;胸腺的皮质部分和髓质部分界限不明显,嗜酸性胸腺小体不易辨认,可能发育不全;小肠绒毛膜结构完整,上皮固有层没有上皮脱落现象;大肠绒毛脊短小,粘液细胞比较多,个别出现上皮细胞脱落现象。
图1 克隆犊牛重要组织器官病理组织学图片
a大脑(200×),b 肺(200×),c肝脏(200×),d睾丸(200×),e肌肉(200×),f淋巴结(200×),g脾脏(200×),h肾脏(200×),l小脑(200×),m心肌(200×),n胸腺(200×),o瓣胃(200×),p大肠(200×),q小肠(200×)

Full size|PPT slide

2.2 自然繁殖荷斯坦牛犊病理组织学变化

自然繁殖的荷斯坦牛犊作为对照组,结果如图2显示,其大脑皮质分层明显,部分出现了血管间隙变化,其它变化不明显;小脑剖面上的树形结构明显,皮质和髓质界限分明,皮质的分子层、蒲肯野细胞层和颗粒层细胞和胶质细胞形态正常;肺部结构清晰,小叶明显,出现部分肺泡扩张;肾脏的髓质和皮质明显,肾小管上皮细胞致密;心肌的肌纤维分布均匀,结构无明显的变化,纤维色彩深浅一致;骨骼肌的肌纤维排列整齐,肌纤维间间隙明显;睾丸曲精细管结构清晰,曲精细管间隙适中;淋巴结皮髓质界限分明,淋巴小结细胞较致密,生发中心明显,周边细胞致密,淋巴窦网状细胞较多;脾脏的中央动脉周围的淋巴鞘清晰,细胞致密,红髓与白髓界限分明;胸腺的皮质部分和髓质部分界限明显,小叶间隔完整,嗜酸性胸腺小体易辨认,发育完全;小肠绒毛膜结构完整,上皮固有层结构完整致密;大肠绒毛脊明显,粘液上皮固有层结构完整,腺体发育良好。
图2 自然繁殖犊牛重要器官组织图片
a大脑(200×),b肺(200×),c肝脏(200×),d睾丸(200×),e肌肉(200×),f淋巴结(200×),g脾脏(200×),h肾脏(200×),l小脑(200×),m心肌(200×),n胸腺(200×),o瓣胃(200×),p大肠(200×),q小肠(200×)

Full size|PPT slide

3 结论与讨论

据顾玉芳等[15]报道,2日龄夭折的体细胞克隆牛心肺功能不全,它的脾脏有脾肿现象,淋巴细胞和白髓数量减少,红髓内可见含铁血黄素沉积,肾脏、肝脏和免疫系统的3处功能均有降低。王晓丽等[16]研究表示,胎死腹中的体细胞克隆水牛肺脏表面覆盖有大量纤维组织且细支气管形状有所改变,由此导致肺功能降低,此克隆水牛的脾脏白髓主要由弥散性的淋巴组织构成,没有典型的白髓结构,血液含量少,淋巴组织发育异常,导致脾脏免疫功能下降。王晓丽等[18]研究体细胞克隆黄牛时发现,其肺泡发育明显异常。袁苏娅等[17]报道,死亡克隆牛心功能不全,部分肝细胞肿大以及脂肪变性,体细胞克隆牛肾小管上皮细胞发生肿胀且颗粒变性。在相关的报道中[16,17,18],发现夭折的水牛和黄牛肺部均存在异常。
在本研究中的克隆荷斯坦奶牛的肺部结构清晰,未发现明显异常,导致此结果不一致的原因可能是由于品种和个体差异,也可能与克隆牛夭折日龄不同有关,过早夭折的克隆牛肺泡肿大不清晰,存活时间长的克隆牛肺部衰竭更严重更明显所致。本实验研究的克隆牛肝脏的肝细胞明显肿大,出现脂肪轻度变性;肾脏的髓质部淤血明显,肾小管上皮细胞出现变性,这与其他研究成果相一致[15,16,17,18]。该克隆牛淋巴结皮髓质界限不分明,淋巴小结细胞较稀疏,生发中心不明显,淋巴窦细胞较少;脾脏的中央动脉周围细胞致密,髓索髓窦明显,红细胞较少,这说明该克隆牛的造血功能可能不完善;胸腺的皮质部分和髓质部分界限不明显,嗜酸性胸腺小体不易辨认,可能发育不全,这表明本夭折的克隆荷斯坦牛的组织病理学病变主要集中在免疫器官,这证明了新生克隆犊牛死亡的可能原因是由于免疫器官的发育不全导致,这更深一步证实了王晓丽等[16]报道的淋巴组织发育异常,从而导致脾脏异常的结果,但仍有待于进一步的研究和证实。本研究显示,夭折的克隆荷斯坦牛的心肌纤维间隙增大,进一步恶化可能会引起其心功能障碍,这可能导致它的死亡[19,20,21,22,23,24,25]。在观察中发现,本实验中的克隆荷斯坦犊牛不同的组织器官均出现轻度的水肿和淤血,这可能与克隆牛在死亡之前生理已经发生病理学变化有一定的关系。体细胞克隆新生后死亡的荷斯坦犊牛和自然繁殖的荷斯坦犊牛主要的组织器官经过比较分析后发现发育存在差异,克隆牛的免疫器官发育不全的问题比较严重,病理学变化明显,引起免疫功能障碍。导致克隆牛对疾病的抵抗力降低,病情发展快速,加速其死亡。这进一步证实了目前在克隆牛进行组织形态学研究中存在的普遍的现象。在对夭折的克隆牛不同的研究中,存在结果不一致的原因可能是由于相关报道均为个例。克隆动物克隆效率低和成活后各种表型异常等问题,以及导致克隆牛的死亡率高的根本原因,还需进一步探究。

References

[1]
Ji X J, Huang H, Ouyang P K. Microbial 2,3-butanediol production: a state-of-the- art review[J]. Biotechnology Advances, 2011,29(3):351-364.
2,3-butanediol is a promising bulk chemical due to its extensive industry applications. The state-of-the-art nature of microbial 2,3-butanediol production is reviewed in this paper. Various strategies for efficient and economical microbial 2,3-butanediol production, including strain improvement, substrate alternation, and process development, are reviewed and compared with regard to their pros and cons. This review also summarizes value added derivatives of biologically produced 2,3-butanediol and different strategies for downstream processing. The future prospects of microbial 2,3-butanediol production are discussed in light of the current progress, challenges, and trends in this field. Guidelines for future studies are also proposed.
[2]
Guo X W, Wang Y Z, Guo J, et al. Efficient production of 2,3-butanediol from cheese whey powder (CWP) solution by Klebsiella pneumoniae through integrating pulsed fed-batch fermentation with a two-stage pH control strategy[J]. Fuel, 2017,203:469-477.
[3]
王爽. 2,3-丁二醇脱水制备甲乙酮的催化剂及工艺研究[D]. 辽宁:大连理工大学, 2014.
[4]
戴建英, 孙亚琴, 孙丽慧, 等. 生物基化学品2,3-丁二醇的研究进展[J]. 化学工程学报, 2010,10(1):200-208.
[5]
Hao W B, Jia F L, Wang J Y, et al. Metabolic engineering of Bacillus sp. for diacetyl production[J]. Process Biochemistry, 2017,58:69-77.
[6]
刘佳娴, 朱家文, 吴艳阳, 等. 2,3-丁二醇分离纯化中反应精馏的实验和模拟[J]. 化学反应工程与工艺, 2012(2):104-110.
[7]
葛岚, 邵晓丛, 吴晓敏, 等. 工业化制备2,3-丁二醇的新途径[J]. 科技创新导报, 2009(33):6-106.
本文基于笔者多年从事虚拟现实相关技术的研究,以大型展馆网上发布为研究对象,探讨了基于虚拟场景建模的大型展馆建模技术,论文首先分析了LOD处理技术的应用,探讨了系统的构架,研究了基于JAVA的网上发布系统的设计,全文是笔者长期工作实践基础上的理论升华,相信对从事相关工作的同行有着重要的参考价值和借鉴意义.
[8]
李亿, 李检秀, 刘海余, 等. 多粘类芽孢杆菌同步糖化发酵玉米粉生产(R,R) -2,3-丁二醇[J]. 广西科学, 2016,23(1):43-46.
[9]
Guo X W, Wang Y Z, Guo J, et al. Efficient production of 2,3-butanediol from cheese whey powder (CWP) solution by Klebsiella pneumoniae through integrating pulsed fed-batch fermentation with a two-stage pH control strategy[J]. Bioresource Technology, 2017,245:1386-1392.
The Klebsiella oxytoca was engineered to produce 2,3-butanediol (2,3-BDO) simultaneously utilizing glucose and galactose obtained from a Golenkinia sp. hydrolysate. For efficient uptake of galactose at a high concentration of glucose, Escherichia coli galactose permease (GalP) was introduced, and the expression of galP under a weak-strength promoter resulted in simultaneous consumption of galactose and glucose. Next, to improve the sugar consumption, a gene encoding methylglyoxal synthase (MgsA) known as an inhibitor of multisugar metabolism was deleted, and the mgsA-null mutant showed much faster consumption of both sugars than the wild-type strain did. Finally, we demonstrated that the engineered K. oxytoca could utilize sugar extracts from a Golenkinia sp. hydrolysate and successfully produces 2,3-BDO.
[10]
Guo X W, Zhang Y H, Cao C H, et al. Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae[J]. Biotechnology and Applied Biochemistry, 2014,61(6):707-715.
Mutants with overexpression of alpha-acetolactate synthase (ALS), alpha-acetolactate decarboxylase, and acetoin reductase (AR), either individually or in combination, were constructed to improve 2,3-butanediol (2,3-BD) production in Klebsiella pneumoniae. The recombinant strains were characterized in terms of the enzyme activity, 2,3-BD yield, and expression levels. The recombinant K. pneumoniae strain (KG-rs) that overexpressed both ALS and AR showed an improved 2,3-BD yield. When cultured in the media with five different carbon sources (glucose, galactose, fructose, sucrose, and lactose), the mutant exhibited higher 2,3-BD productivity and production than the parental strain in all the tested carbon sources except for lactose. The 2,3-BD production of KG-rs in a batch fermentation with glucose as the carbon source was 12% higher than that of the parental strain. (c) 2014 International Union of Biochemistry and Molecular Biology, Inc.
[11]
Ma K, He M, You H, et al. Improvement of (R,R)-2,3-butanediol production from corn stover hydrolysate by cell recycling continuous fermentation[J]. Chemical Engineering Journal, 2018,15(1):361-369.
[12]
张刚, 杨光, 李春, 等. 生物法生产2,3-丁二醇研究进展[J]. 中国生物工程杂志, 2008,28(6):133-140.
2,3-丁二醇是一种重要的化工原料,可广泛应用于多个领域。二战期间由于合成橡胶需要大量1,3-丁二烯,2,3-丁二醇生产空前发展。近年来,由于聚对苯二甲酸丁烯树脂、γ-丁内酯,Spandex弹性纤维及其前体的需求增长,2,3-丁二醇的需求和产量也稳步增长。多年来,生物法生产2,3-丁二醇虽然得到了广泛的研究,但一直没有实现工业化。本文从产生2,3-丁二醇的菌种及2,3-丁二醇的生理意义、代谢途径、旋光异构体的形成机理、影响发酵的因素与产物的提纯等方面对生物法生产2,3-丁二醇进行了综述并提出了生物法生产2,3-丁二醇要解决的几个问题。
[13]
王青艳, 谢能中, 黎贞崇, 等. 微生物法合成(R,R)-2,3-丁二醇的研究进展与展望[J]. 基因组学与应用生物学, 2014 , 33(6):1367-1373.
[14]
纪晓俊, 朱建国, 高振, 等. 微生物发酵法生产2,3-丁二醇的研究进展[J]. 现代化工, 2006,26(8):23-27.
[15]
Park J H, Choi M A, Kim Y J, et al. Engineering of Klebsiella oxytoca for production of 2,3-butanediol via simultaneous utilization of sugars from a Golenkinia sp. hydrolysate[J]. Fuel, 2017,203:469-477.
[16]
Kim D K, Rathnasingh C, Song H, et al. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production[J]. Journal of Bioscience and Bioengineering, 2013,116(2):186-192.
Fermentative 2,3-butanediol (2,3-BD) production has been receiving increasing interest for its potential as a platform chemical intended for the production of synthetic rubbers, plastics, and solvents. In this study, Klebsiella oxytoca GSC 12206, a 2,3-BD native hyper-producing and nonpathogenic bacterium, was isolated from a cattle farm. Since this isolate produced a significant amount of lactic acid along with 2,3-BD, its mutant deficient in lactic acid formation was constructed by disrupting the ldhA gene which encodes lactate dehydrogenase. The ldhA gene was deleted precisely by using the pKGS plasmid. When compared to the wild-type strain, the mutant deleted with the ldhA gene in glucose fermentation resulted in an increase of 54%, 13%, 60%, and 78% of 2,3-BD titer, productivity, yield, and selectivity, respectively. A fed-batch fermentation by this mutant with intermittent glucose feeding produced 115 g/L of 2,3-BD with an yield and productivity of 0.41 g 2,3-BD per g glucose and 2.27 g/L h, respectively, indicating the usefulness for the industrial production of 2,3-BD. (c) 2013, The Society for Biotechnology, Japan.
[17]
Kim S J, Seo S O, Jin Y S, et al. Production of 2, 3-butanediol by engineered Saccharomyces cerevisiae[J]. Bioresource Technology, 2013,146:274-281.
In order to produce 2,3-butanediol (2,3-BD) with a high titer, it is necessary to engineer Saccharomyces cerevisiae by deleting the competing pathway and overexpressing the 2,3-BD biosynthetic pathway. A pyruvate decarboxylase (Pdc)-deficient mutant was constructed and evolved for rapid glucose consumption without ethanol production. Genome re-sequencing of the evolved strain (SOS4) revealed a point mutation (A81P) in MTH1 coding for a transcriptional regulator involved in glucose sensing, unlike the previously reported Pdc-deficient mutant which had internal deletion in MTH1. When alsS and alsD genes from Bacillus subtilis, and endogenous BDH1 gene were overexpressed in SOS4, the resulting strain (BD4) not only produced 2,3-BD efficiently, but also consumed glucose faster than the parental strain. In fed-batch fermentation with optimum aeration, 2,3-BD concentration increased up to 96.2 g/L. These results suggest that S. cerevisiae might be a promising host for producing 2,3-BD for industrial applications. (c) 2013 Elsevier Ltd.
[18]
宋洋波, 马捷, 李丽, 等. 后基因组时代的酿酒酵母研究策略[J]. 中国农业科学, 2012,45(23):4873-4882.
近年,随着基因工程技术的日益发展,酿酒酵母在分子生物学研究方面的应用越来越广泛。本文介绍了后基因组学用于酿酒酵母的方法,并概述了利用该手段对试验菌株与商业酿酒酵母进行生理功能分析、研究和改造的最新进展,展示了后基因组时代对酿酒酵母的影响及综合基因组信息、生物信息学和分子生物学技术的研究策略。最后,展望了现代生物技术手段在葡萄酒工业中的应用前景。
[19]
闫道江, 王彩霞, 周杰民, 等. 酿酒酵母产苹果酸的还原TCA路径构建及发酵调控[J]. Chinese Journal of Biotechnology, 2013,29(10):1484-1493.
Malic acid is widely used in food, and chemical industries. Through overexpressing pyruvate carboxylase and malate dehydrogenase in pdc1-deficient Saccharomyces cerevisiae, malic acid was successfully produced through the reductive TCA pathway. No malic acid was detected in wild type Saccharomyces cerevisiae, however, 45 mmol/L malic acid was produced in engineered strain, and the concentration of byproduct ethanol also reduced by 18%. The production of malic acid enhanced 6% by increasing the concentration of Ca2+. In addition, the final concentration reached 52.5 mmol /L malic acid by addition of biotin. The increasing is almost 16% higher than that of the original strain.
[20]
刘德安, 王长丽, 丁昊, 等. 代谢工程改造酿酒酵母生产2,3-丁二醇的研究进展[J]. 中国酿造, 2018,37(09):12-17.
[21]
黄守锋, 裴芳艺, 王长丽, 等. 利用酿酒酵母工程菌株生产2,3-丁二醇的研究进展[J].食品安全质量检测学报, 2015(10):3928-3934.
2,3-丁二醇在食品、化妆品、医药和运输燃料等行业具有广泛的应用, 因而提高2,3-丁二醇的产量一直备受研究者们关注。目前, 研究的热点主要集中于利用微生物发酵可再生资源生产2,3-丁二醇以取代传统的化学合成法, 并取得了较大的进展。常见的2,3-丁二醇产生菌有克雷伯氏菌属和芽孢杆菌属, 它们能有效利用可再生资源高效生产2,3-丁二醇。然而这些细菌被认为是潜在的病原菌, 难以应用于大规模生产。因此, 研究者们又将目光转向了酿酒酵母。就安全性和工业化生产要求而言, 酿酒酵母是生产2,3-丁二醇的理想菌种。本文对国内外的相关研究进行了总结, 介绍了酿酒酵母产2,3-丁二醇的优势和不足, 2,3-丁二醇合成代谢途径及其基因工程菌株构建的方向, 以及通过代谢工程将酿酒酵母改造成能高效、高质、高量产生2,3-丁二醇的理想菌株的研究关键。
[22]
佟天奇, 裴芳艺, 王长丽, 等. 酿酒酵母(Saccharomyces cerevisiae)WBG3菌株发酵特性研究[J]. 中国农学通报, 2017,34(32).

RIGHTS & PERMISSIONS

Copyright reserved © 2020. Chinese Agricultural Association Bulletin. All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Agricultural Association or the Editorial Board, unless this is clearly specified.
Share on Mendeley
PDF(1407 KB)

Accesses

Citation

Detail

Sections
Recommended

/