The Internal Organs of Dead Calf of Somatic Cloning Holstein Cows: Histopathological Observation

Sun Wei, Bao Xiangnan, Wu Yungaowa, Wang Jianguo, Li Yongsheng, Li Shanduo, Zhang Tiezhu, Wang Feifei, Li Xihe

PDF(2066 KB)
PDF(2066 KB)
Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (20) : 114-118. DOI: 10.11924/j.issn.1000-6850.casb20190500184

The Internal Organs of Dead Calf of Somatic Cloning Holstein Cows: Histopathological Observation

Author information +
History +

Abstract

To investigate the death causes of cloned Holstein bulls, we compared major tissues and organs of the neonatal-death cloned holstein bull and natural propagation Holstein bull calf. We observed and analyzed the main tissues and organs by anatomy and HE (hematoxylin-eosin staining) staining. The results showed that the lung structure of the neonatal-death cloned Holstein bull was clear. Its liver cells were obviously swollen and the liver had slight degeneration. The renal tubular epithelial cells of the kidney had slight degeneration. The interstitial space between the myocardium fibers was enlarged. Skeletal muscle fiber gap was obvious, and vacuolar degeneration, which might lead to muscle weakness and insufficiency of the cloned bull. The boundaries of the lymphoid cortex and medulla were not distinct. Lymph node cells were sparse, germinal center was not obvious, and lymphatic sinus cells were less. There were fewer red blood cells in the spleen, which might indicate that the cloned bull had imperfect hematopoietic function. The boundary between the cortical and the medulla of the thymus was not obvious. The eosinophilic thymus gland was not easily identifiable and might be hypoplasia. The cloned Holstein bull’s immune organs had different degrees of hypoplasia, which might be the main reason for the high mortality after birth.

Key words

somatic cell cloning / organ abnormality / histopathology / neonatal death / Holstein cow

Cite this article

Download Citations
Sun Wei , Bao Xiangnan , Wu Yungaowa , Wang Jianguo , Li Yongsheng , Li Shanduo , Zhang Tiezhu , Wang Feifei , Li Xihe. The Internal Organs of Dead Calf of Somatic Cloning Holstein Cows: Histopathological Observation. Chinese Agricultural Science Bulletin. 2020, 36(20): 114-118 https://doi.org/10.11924/j.issn.1000-6850.casb20190500184

0 引言

在1938年克隆技术的设想被提出以后,随着克隆羊“多莉”的出生,山羊[1,2]、牛[3]、猪[4]、小鼠[5]、马[6]、骆驼[7]、马鹿[8]等多种动物通过体细胞核移植技术获得了健康成活的后代。体细胞克隆技术是利用供体动物细胞的DNA作为基因表达的模板,可以使克隆后代与供体动物的遗传性状完全相同,从而使动物品种的优良性状得以复制,所以利用该技术进行良种动物遗传资源的保护和扩繁产业前景广阔。体细胞克隆技术应用于牛的研究也越来越多,荷斯坦奶牛是目前世界上产奶量最高、饲养数量最多的奶牛品种,关乎奶牛养殖户和奶牛养殖生产厂家的经济效益。因此研究荷斯坦种公牛的重要性不言而喻,目前,在体细胞克隆荷斯坦奶牛上的研究仍然不多。
然而克隆动物仍存在很多问题,克隆的效率很低,仅能达到1%~3%[8],表现为妊娠率低、胎儿流产率高以及成活率较低等。而且成活的克隆动物也同样存在各种表型异常,例如心、肝、肺和胎盘等器官发育异常、畸形,免疫器官病理性缺陷等,就其原因仍在研究[9,10,11,12,13,14]。为了探究克隆荷斯坦奶牛出生后死亡的原因,本研究对出生后30 min死亡的克隆荷斯坦公牛和自然繁殖的荷斯坦公牛的尸体进行了详细的组织器官病理学的比较,以期从组织器官形态学的角度找出克隆荷斯坦牛死亡的原因,给荷斯坦牛克隆的理论和实践应用提供进一步的参考。

1 材料与方法

1.1 材料

1.1.1 试剂、仪器 全封闭组织脱水机(VIP-5Jr-J2型),自动组织包埋机(TEC5EME-2型),平推式切片机(CRM-440型),组织标本伸展水槽(PS-M型),电热恒温烤片机(Slidewarmer)等均采购自日本樱花检验仪器株式会社;光学显微镜(MODEL U-MDOB3 OLYMPUS CORPORATION),10%中性福尔马林、各浓度乙醇、乙醇二甲苯、二甲苯、石蜡、苏木素色精、伊红等由内蒙古赛科星家畜种业与繁育生物技术研究院有限公司提供。
1.1.2 材料来源 克隆出生后30 min夭折的1头克隆荷斯坦公犊由内蒙古赛科星繁育生物技术(集团)股份有限公司提供,自然繁殖出生的荷斯坦公牛犊由旭日牧场提供。
1.1.3 采集组织样品 将刚死掉的克隆荷斯坦牛立刻进行解剖,详细观察各组织器官的变化,并取心肌、肺脏、脾脏、大脑、小脑、胸腺、肝脏、睾丸、肌肉、淋巴结、肾脏以及消化系统等组织器官,利用10%甲醛进行固定,并送至内蒙古农业大学动物医学院病理研究室进行常规石蜡切片的制备和分析。

1.2 石蜡切片制作方法

将一块病理组织制成一张病理切片标本,须经过一系列的过程,其主要程序为取材→固定→冲洗→脱水→透明→浸蜡→包埋→切片→染色→封固。
1.2.1 取材与固定 把器官组织用PBS清洗干净,用手术剪将鞘膜去掉。从不同部位取1.0 cm×1.0 cm×0.5 cm大小的组织块放入盛有10%甲醛的50 mL离心管中。用记号笔标记名称,带回实验室。将组织移入盛有4%甲醛的500 mL蓝盖瓶中,加入组织块体积20倍的10%甲醛固定处理24 h以上。
1.2.2 组织块修剪 固定后的组织有一定硬度后切取平整,修掉一些不规则的部位,修剪成长方体或正方体。修剪后的组织块大小为0.5 cm × 0.5 cm × 0.2 cm为宜,放入塑料包埋盒中,把盖子盖好。
1.2.3 水洗 将修剪后包埋盒中的组织置于水龙头下用自来水流水冲洗,目的为吸取渗入组织中的固定液,以免影响对组织结构的观察。
1.2.4 脱水、透明与浸蜡 将组织块放入装有50%、75%、85%、95%、100%不同浓度梯度的乙醇处理液中,在装有二甲苯和液体蜡的脱水机中进行脱水、透明和浸蜡。各步骤的处理时间均为1 h。
1.2.5 包埋 将塑料包埋盒中的组织块和金属包埋盒放入盛有液体蜡的包埋机中,从塑料包埋盒取出组织块放入金属包埋盒,把组织块压平。同时放入液体蜡,移到包埋盒冷却区进行冷却。
1.2.6 切片 蜡块冷却变硬后,即可切片。切片的厚度为3 μm。挑取完整且无破裂的切片放置于干的载玻片上,滴加几滴20%乙醇将切片初步展开,之后将切片缓慢放入40℃恒温水浴锅中使切片彻底展开。选择展开状态良好的载玻片,42℃烘干。
1.2.7 脱蜡、水化及HE染色 将切片放入盛有二甲苯,梯度乙醇(100%、95%、85%、75%、50%),苏木精-伊红染液的染色机中染色70 min。
1.2.8 脱水、透明和封片 脱水和透明处理步骤与1.2.4相同,并用中性树胶封片。

2 结果与分析

2.1 克隆牛病理组织学变化

观察结果见图1,出生30 min夭折的克隆牛大脑皮质分层明显,毛细血管周隙增宽,并有轻度的水肿现象;小脑剖面上的树形结构不是很明显,神经纤维层、细胞层溶解并形成空泡,蒲肯野细胞层和颗粒层细胞形成空隙层明显;肺部结构清晰,有轻度淤血;肝脏的肝细胞明显肿大,出现脂肪轻度变性;肾脏的髓质部淤血明显,肾小管上皮细胞出现变性;心肌的肌纤维间空隙增大,结构无明显的变化,纤维色彩深浅一致;骨骼肌的肌纤维排列整齐,肌纤维间隙明显,空泡变性,出现轻度的水肿现象,可能导致该克隆牛犊肌肉无力且功能不全;睾丸曲精细管结构清晰,曲精细管间隙增宽,并轻度水肿和淤血;淋巴结皮髓质界限不分明,淋巴小结细胞较稀疏,生发中心不明显,淋巴窦细胞较少;脾脏的中央动脉周围细胞致密,髓索髓窦明显,红细胞较少,可能该克隆牛的造血功能不完善;胸腺的皮质部分和髓质部分界限不明显,嗜酸性胸腺小体不易辨认,可能发育不全;小肠绒毛膜结构完整,上皮固有层没有上皮脱落现象;大肠绒毛脊短小,粘液细胞比较多,个别出现上皮细胞脱落现象。
图1 克隆犊牛重要组织器官病理组织学图片
a大脑(200×),b 肺(200×),c肝脏(200×),d睾丸(200×),e肌肉(200×),f淋巴结(200×),g脾脏(200×),h肾脏(200×),l小脑(200×),m心肌(200×),n胸腺(200×),o瓣胃(200×),p大肠(200×),q小肠(200×)

Full size|PPT slide

2.2 自然繁殖荷斯坦牛犊病理组织学变化

自然繁殖的荷斯坦牛犊作为对照组,结果如图2显示,其大脑皮质分层明显,部分出现了血管间隙变化,其它变化不明显;小脑剖面上的树形结构明显,皮质和髓质界限分明,皮质的分子层、蒲肯野细胞层和颗粒层细胞和胶质细胞形态正常;肺部结构清晰,小叶明显,出现部分肺泡扩张;肾脏的髓质和皮质明显,肾小管上皮细胞致密;心肌的肌纤维分布均匀,结构无明显的变化,纤维色彩深浅一致;骨骼肌的肌纤维排列整齐,肌纤维间间隙明显;睾丸曲精细管结构清晰,曲精细管间隙适中;淋巴结皮髓质界限分明,淋巴小结细胞较致密,生发中心明显,周边细胞致密,淋巴窦网状细胞较多;脾脏的中央动脉周围的淋巴鞘清晰,细胞致密,红髓与白髓界限分明;胸腺的皮质部分和髓质部分界限明显,小叶间隔完整,嗜酸性胸腺小体易辨认,发育完全;小肠绒毛膜结构完整,上皮固有层结构完整致密;大肠绒毛脊明显,粘液上皮固有层结构完整,腺体发育良好。
图2 自然繁殖犊牛重要器官组织图片
a大脑(200×),b肺(200×),c肝脏(200×),d睾丸(200×),e肌肉(200×),f淋巴结(200×),g脾脏(200×),h肾脏(200×),l小脑(200×),m心肌(200×),n胸腺(200×),o瓣胃(200×),p大肠(200×),q小肠(200×)

Full size|PPT slide

3 结论与讨论

据顾玉芳等[15]报道,2日龄夭折的体细胞克隆牛心肺功能不全,它的脾脏有脾肿现象,淋巴细胞和白髓数量减少,红髓内可见含铁血黄素沉积,肾脏、肝脏和免疫系统的3处功能均有降低。王晓丽等[16]研究表示,胎死腹中的体细胞克隆水牛肺脏表面覆盖有大量纤维组织且细支气管形状有所改变,由此导致肺功能降低,此克隆水牛的脾脏白髓主要由弥散性的淋巴组织构成,没有典型的白髓结构,血液含量少,淋巴组织发育异常,导致脾脏免疫功能下降。王晓丽等[18]研究体细胞克隆黄牛时发现,其肺泡发育明显异常。袁苏娅等[17]报道,死亡克隆牛心功能不全,部分肝细胞肿大以及脂肪变性,体细胞克隆牛肾小管上皮细胞发生肿胀且颗粒变性。在相关的报道中[16,17,18],发现夭折的水牛和黄牛肺部均存在异常。
在本研究中的克隆荷斯坦奶牛的肺部结构清晰,未发现明显异常,导致此结果不一致的原因可能是由于品种和个体差异,也可能与克隆牛夭折日龄不同有关,过早夭折的克隆牛肺泡肿大不清晰,存活时间长的克隆牛肺部衰竭更严重更明显所致。本实验研究的克隆牛肝脏的肝细胞明显肿大,出现脂肪轻度变性;肾脏的髓质部淤血明显,肾小管上皮细胞出现变性,这与其他研究成果相一致[15,16,17,18]。该克隆牛淋巴结皮髓质界限不分明,淋巴小结细胞较稀疏,生发中心不明显,淋巴窦细胞较少;脾脏的中央动脉周围细胞致密,髓索髓窦明显,红细胞较少,这说明该克隆牛的造血功能可能不完善;胸腺的皮质部分和髓质部分界限不明显,嗜酸性胸腺小体不易辨认,可能发育不全,这表明本夭折的克隆荷斯坦牛的组织病理学病变主要集中在免疫器官,这证明了新生克隆犊牛死亡的可能原因是由于免疫器官的发育不全导致,这更深一步证实了王晓丽等[16]报道的淋巴组织发育异常,从而导致脾脏异常的结果,但仍有待于进一步的研究和证实。本研究显示,夭折的克隆荷斯坦牛的心肌纤维间隙增大,进一步恶化可能会引起其心功能障碍,这可能导致它的死亡[19,20,21,22,23,24,25]。在观察中发现,本实验中的克隆荷斯坦犊牛不同的组织器官均出现轻度的水肿和淤血,这可能与克隆牛在死亡之前生理已经发生病理学变化有一定的关系。体细胞克隆新生后死亡的荷斯坦犊牛和自然繁殖的荷斯坦犊牛主要的组织器官经过比较分析后发现发育存在差异,克隆牛的免疫器官发育不全的问题比较严重,病理学变化明显,引起免疫功能障碍。导致克隆牛对疾病的抵抗力降低,病情发展快速,加速其死亡。这进一步证实了目前在克隆牛进行组织形态学研究中存在的普遍的现象。在对夭折的克隆牛不同的研究中,存在结果不一致的原因可能是由于相关报道均为个例。克隆动物克隆效率低和成活后各种表型异常等问题,以及导致克隆牛的死亡率高的根本原因,还需进一步探究。

References

[1]
Wilmut I, Schnieke A E, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells[J]. Nature, 1997,385(6619):810-813.
[2]
Baguisi A, Behboodi E, Melican A D, et al. Production of goats by somatic cell nuclear transfer[J]. Nature Biotech, 1999,17(5):456-461.
[3]
Cibelli J B, Stice S L, Golueke P J, et al. Cloned transgenic calves produced from nonquiescent fetalfibroblasts[J]. Science, 1998,280(5367):1256-1258.
[4]
Betthauser J, Forsberg E, Augenstein M, et al. Production of cloned pigs from in vitro systems[J]. Nature Biotech, 2000,18(10):1055-1059.
[5]
Wakayama T, Yanagimachi R. Cloning of male mice from adult tail-tip cells.Nat[J]. Genet, 1999,22(2):127-128.
[6]
Galli C, Lagutina I, Crotti G, et al. Pregnancy:a cloned horse born to its dam twin[J]. Nature, 2003,424(6949):635.
Several animal species, including sheep, mice, cattle, goats, rabbits, cats, pigs and, more recently, mules have been reproduced by somatic cell cloning, with the offspring being a genetic copy of the animal donor of the nuclear material used for transfer into an enucleated oocyte. Here we use this technology to clone an adult horse and show that it is possible to establish a viable, full-term pregnancy in which the surrogate mother is also the nuclear donor. The cloned offspring is therefore genetically identical to the mare who carried it, challenging the idea that maternal immunological recognition of fetal antigens influences the well-being of the fetus and the outcome of the pregnancy.
[7]
Wani N A, Wernery U, Hassan F A, et al. Production of the first cloned camel by somatic cell nuclear transfer[J]. Biology Of Reproduction, 2010,82(2):373-379.
In this study, we demonstrate the use of somatic cell nuclear transfer to produce the first cloned camelid, a dromedary camel (Camelus dromedarius) belonging to the family Camelidae. Donor karyoplasts were obtained from adult skin fibroblasts, cumulus cells, or fetal fibroblasts, and in vivo-matured oocytes, obtained from preovulatory follicles of superstimulated female camels by transvaginal ultrasound guided ovum pick-up, were used as cytoplasts. Reconstructed embryos were cultured in vitro for 7 days up to the hatching/hatched blastocyst stage before they were transferred to synchronized recipients on Day 6 after ovulation. Pregnancies were achieved from the embryos reconstructed from all cell types, and a healthy calf, named Injaz, was born from the pregnancy by an embryo reconstructed with cumulus cells. Genotype analyses, using 25 dromedary camel microsatellite markers, confirmed that the cloned calf was derived from the donor cell line and the ovarian tissue. In conclusion, the present study reports, for the first time, establishment of pregnancies and birth of the first cloned camelid, a dromedary camel (C. dromedarius), by use of somatic cell nuclear transfer. This has opened doors for the amelioration and preservation of genetically valuable animals like high milk producers, racing champions, and males of high genetic merit in camelids. We also demonstrated, for the first time, that adult and fetal fibroblasts can be cultured, expanded, and frozen without losing their ability to support the development of nuclear transfer embryos, a technology that may potentially be used to modify fibroblast genome by homologous recombination so as to generate genetically altered cloned animals.
[8]
Debra K, Berg, Li C Y, et al. Red Deer Cloned from Antler Stem Cells and Their Differentiated Progeny[J]. Biology Of Reproduction, 2007,77(3):384-394.
[9]
Cibelli J B, Campbell K H, Seidel G E, et al. The health profile of cloned animals[J]. Nat Biotechnol, 2002,20(1):13-14.
[10]
Constant F, Guillomot M, Heyman Y, et al. Large offspring or large placenta syndrome Morphometric analysis of late ges-tation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois[J]. Biol Reprod, 2006,75(1):122-130.
Somatic nuclear transfer (NT) in cattle is often complicated by fetal oversize (i.e., large offspring syndrome), hydrallantois, and placentomegaly in late gestation. The aims of this work were to obtain data on the placentome structure in NT-recipient cows with hydrallantois (NTH) and to relate these with fetal and placental weights to better understand the abnormalities observed in NTH pregnancies during the third trimester. Pregnant cows were slaughtered between Gestation Days 180 and 280. The fetuses were weighed, and the placentomes were numbered and weighed. Placentomes were examined by histologic and stereological techniques. Macroscopic data showed that placental overgrowth preceded fetal overgrowth, and the ratio of the fetal to the total placentome weight in the NTH group was lower than that in controls after Gestation Day 220. This suggests that placental overgrowth is due to placental default rather than due to fetal overgrowth, as shown also by stereological analysis showing primary deregulation of the growth of cotyledonary tissues. Observed alterations, such as thinning of the maternal epithelium within placentomes and increased trophoblastic surface, could be secondary adaptations. Thus, placental growth deregulations would be due to modifications of the expression of placental factors. Various examples of placental deficiency were observed, suggesting that some fetal abnormalities observed in NTH calves, such as enlarged heart, enlarged umbilical cord, and abdominal ascites, are consequences of placental dysfunction. Therefore, the condition described by the term
[11]
Chavatte-Palmer P, Heyman Y, Richard C, et al. Clini-cal, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells[J]. Biol Reprod, 2002,66(6):1596-1603.
Although healthy animals are born after nuclear transfer with somatic cells nuclei, the success of this procedure is generally poor (2%-10%) with high perinatal losses. Apparently normal surviving animals may have undiagnosed pathologies that could develop later in life. The gross pathology of 16 abnormal bovine fetuses produced by nuclear transfer (NT) and the clinical, endocrinologic (insulin-like growth factors I and II [IGF-I and IGF-II], IGF binding proteins, post-ACTH stimulation cortisol, leptin, glucose, and insulin levels), and biochemical characteristics of a group of 21 apparently normal cloned calves were compared with those of in vitro-produced (IVP) controls and controls resulting from artificial insemination. Oocytes used for NT or IVP were matured in vitro. NT to enucleated oocytes was performed using cultured adult or fetal skin cells. After culture, Day 7, grade 1-2 embryos were transferred (one per recipient). All placentas and fetuses from clones undergoing an abnormal pregnancy showed some degree of edema due to hydrops. Mean placentome number was lower and mean placentome weight was higher in clones than in controls (69.9 +/- 9.2 placentomes with a mean weight of 144.3 +/- 21.4 g in clones vs. 99 and 137 placentomes with a mean individual weight of 34.8 and 32.4 g in two IVP controls). Erythrocyte mean cell volume was higher at birth (P < 0.01), and body temperature and plasma leptin concentrations were higher and T4 levels were lower during the first 50 days and the first week (P < 0.05), respectively, in clones. Plasma IGF-II concentrations were higher at birth and lower at Day 15 in clones (P < 0.05). Therefore, apparently healthy cloned calves cannot be considered as physiologically normal animals until at least 50 days of age.
[12]
Miglino M A, Pereira F T, Visintin J A, et al. Placentation in cloned cattle: Structure and microvascular architecture[J]. Theriogenology, 2007,68(4):604-617.
[13]
郭磊, 李慧, 韩之明. DNA甲基化和组蛋白修饰在克隆动物发育过程中的作用[J]. 遗传, 2010,32(8):762-768.
[14]
杨荣荣, 李相运. DNA甲基化与克隆动物的发育异常[J]. 遗传, 2007,29(9):1043-1048.
[15]
顾玉芳, 李善姬, 吴素清. 内蒙古首例体细胞克隆牛2日龄死亡后的病理学观察[J]. 长江大学学报, 2007,4(4):30-32.
[16]
王晓丽, 蒋建荣, 徐莉萍, 等. 一例体细胞克隆水牛肺、脾脏的组织结构观察[J]. 湖北农业科学, 2010,49(6):1417-1418.
[17]
袁苏娅, 姬丽娜, 王勇胜, 等. 1例转基因体细胞克隆牛主要脏器的组织病理学观察[J]. 中国兽医学报, 2013,23(1):113-118.
[18]
王晓丽, 韦精卫, 房慧伶, 等. 一例体细胞克隆黄牛肺脏的组织结构观察[J]. 中国畜牧兽医, 2009,36(2):138-140.
[19]
Agabiti Rosei E, Muiesan M L. Prognostic significance of left ventricular hypertrophy regression[J]. Adv Exp Med Biol, 1997,432:199-205.
[20]
张荣华, 王曦, 李武峰. 哺乳动物克隆技术研究进展[J]. 山西农业科学, 2017,45(9):1577-1582.
[21]
Leal Yepes F A, Mann S, Overton T R, et al. Effect of rumen-protected branched-chain amino acid supplementation on production- and energy-related metabolites during the first 35 days in milk in Holstein dairy cows[J]. Journal of Dairy Science, 2019,10:5657-5672.
[22]
Zhao K X, Jin X, Ji J T, et al. Individual identification of Holstein dairy cows based on detecting and matching feature points in body images[J]. Biosystems Engineering, 2019,10:128-139.
[23]
Piantoni P, Lock A L, Allen M S. Corrigendum to “Saturated fat supplementation interacts with dietary forage NDF content during the immediate postpartum period in Holstein cows: Energy balance and metabolism”[J]. Journal of Dairy Science, 2019,98(3):3323-3334.
[24]
Piantoni P, Lock A L, Allen M S. Saturated fat supplementation interacts with dietary forage neutral detergent fiber content during the immediate postpartum and carryover periods in Holstein cows: Production responses and digestibility of nutrients[J]. Journal of Dairy Science, 2015,5:3309-3322.
[25]
Khosravi M, Rouzbehan Y, Rezaei M, et al. Total replacement of corn silage with sorghum silage improves milk fatty acid profile and antioxidant capacity of Holstein dairy cows[J]. Journal of Dairy Science, 2018,10:10953-10961.

RIGHTS & PERMISSIONS

Copyright reserved © 2020.
Share on Mendeley
PDF(2066 KB)

36

Accesses

0

Citation

Detail

Sections
Recommended

/