Agrometeorological Observation on Lycium barbarum L. in Qaidam: Method and Standard Establishment

Yan Liangdong, Zhao Mengfan, Liang Zhiyong, Lei Yuhong, Yang Yinsheng

PDF(1248 KB)
PDF(1248 KB)
Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (15) : 81-86. DOI: 10.11924/j.issn.1000-6850.casb19020014

Agrometeorological Observation on Lycium barbarum L. in Qaidam: Method and Standard Establishment

Author information +
History +

Abstract

Based on the principles of continuity, wide applicability and operability, we formulated the Agrometeorological Observation Method of Lycium barbarum L., combined with the Agrometeorological Observation Code and the observational experiment of Lycium barbarum L. in Qaidam, established the methods and standards for the observation and assessment of the development period, growth condition, growth and yield of Lycium barbarum L. and agrometeorological disasters, insect pests and so on. At the same time, according to the problems existed in the actual observation, we put forward the solutions under special circumstances such as low temperature freezing damage, pest damage and so on, further optimized the observation standards to realize the standardization of meteorological observation, scientific research and service of Lycium barbarum L. in Qaidam, and provide technological support for high-yield and high-quality production of Lycium barbarum L..

Key words

Lycium barbarum L. / agrometeorological observation criteria / Qaidam / suggestion / standard establishment

Cite this article

Download Citations
Yan Liangdong , Zhao Mengfan , Liang Zhiyong , Lei Yuhong , Yang Yinsheng. Agrometeorological Observation on Lycium barbarum L. in Qaidam: Method and Standard Establishment. Chinese Agricultural Science Bulletin. 2020, 36(15): 81-86 https://doi.org/10.11924/j.issn.1000-6850.casb19020014

References

[1]
Manzoni S, Vico G, Porporato A , et al. Biological constraints on water transport in the soil-plant-atmosphere system[J]. Advances in Water Resources, 2013,51:292-304.
[2]
冯秀藻, 陶炳炎 . 农业气象学原理[M]. 北京: 气象出版社, 1991.
[3]
郭发辉, 宋超辉 . 全国农业气象资料数据模式的研制[J]. 气象科技, 2004,32(5):372-376.
[4]
郑艳萍, 高桂芹, 王秀玲 . 唐山地区近48年农业气候资源变化特征分析[J]. 中国农学通报, 2010,26(20).
[5]
殷颂葵, 王健, 武振利 . 基于SWOT分析的青海省枸杞产业发展策略研究[J]. 开发研究, 2012,162(5):49-52.
[6]
苏雪玲, 郑国琦, 刘根红 , 等. 盐碱地采果期土壤水分对宁夏枸杞品质的影响[J]. 西北农业学报, 2015,24(11):126-132.
[7]
祁栋林, 苏文将, 李璠 , 等. 近50年青海高原生长季日照时数的变化特征[J]. 中国农学通报, 2015,31(20):186-194.
[8]
林兆霞 . “一带一路”视域下青海省枸杞产业发展现状及建议[J]. 现代农业科技, 2016(7):335-336.
[9]
Havlík P, Valin H, Herrero M , et al. Climate change mitigation through livestock system transitions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(10):3709.
Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO(2)e.y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions fromboth the agricultural and land-use change sectors with a carbon price of US$10 per tCO(2)e could lead to an abatement of 3,223 MtCO(2)e.y(-1). Livestock system transitions would contribute 21% of the total abatement, intra-and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO(2)e.y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient-measured in "total abatement calorie cost"-than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.
[10]
缑倩倩, 屈建军, 韩致文 , 等. 西北干旱半干旱区生态系统碳循环研究进展[J]. 中国农学通报, 2013,29(35):205-210.
[11]
刘静 . 宁夏枸杞气象研究[M]. 北京: 气象出版社, 2003.
[12]
刘静, 张晓煜, 杨有林 , 等. 枸杞产量与气象条件的关系研究[J]. 中国农业气象, 2004,25(1):17-21.
[13]
叶英, 索有瑞, 韩丽娟 , 等. 柴达木枸杞研究开发现状及产业前景分析[J]. 食品工业, 2014(2):210-213.
[14]
胡晓黎, 董小莉, 杨荣旺 , 等. 提高农气观测质量的方法[J]. 陕西气象, 2007(4):28-29.
农业气象观测质量的高低直接关系到气象为农业服务的水平和效果,其中作物观测和发报是农气观测工作的核心.本文针对陕西农气观测和编报提出了提高农气观测质量的方法.
[15]
张业忠 . 提高农业气象观测报表质量的技巧[J]. 广东气象, 2008,30(3):64-65.
[16]
单新兰, 钟海云, 杜宏娟 . 宁夏农业气象观测资料规范化探讨[J]. 干旱气象, 2011,29(3):377-382.
[17]
宁夏农林科学院农副产品贮藏加工研究所. 枸杞(枸杞子),GB/T 18672—2002[S]. 北京: 中国标准出版社, 2002: 2-5.
[18]
李润淮, 石志刚, 安巍 , 等. 菜用枸杞新品种宁杞菜1号[J]. 中国蔬菜, 2002(5):48.
PDF下载
[19]
李莉, 梁涛, 刘晓影 . 浅谈地面气象观测工作中应注意的细节问题[J]. 农业与技术, 2012,32(9):146-146.
[20]
中国气象局. 农业气象观测规范枸杞,QX/T 282-2015[S]. 北京: 中国标准出版社, 2015: 2-5.
[21]
李锋, 杨芳, 李云翔 , 等. 枸杞蚜虫发育的有效积温和发育起点温度测定[J]. 宁夏农林科技, 2002(3):18-19.
通过野外调查和室内饲养测定,对枸杞蚜虫世代发育与温度的关系,有效积温和发育起点温度进行了研究,结果表明:枸杞蚜虫在银川地区每年约19.65代.完成一代需有效积温88.36日·度,发育起点温度为8.909℃.7~8月持续高温对枸杞蚜虫种群有抑制作用.
[22]
刘引鸽 . 西北地区生态风险态势及预测[J]. 中国农学通报, 2014,30(23):133-138.
[23]
张宗山, 刘静, 张丽荣 , 等. 宁夏枸杞炭疽病病原的生物学特性研究[J]. 西北农业学报, 2005,14(6):132-136.
[24]
陈君, 程惠珍, 张建文 , 等. 宁夏枸杞害虫及天敌种类的发生规律调查[J]. 中药材, 2003,26(6):391-394.
[25]
徐常青, 刘赛, 徐荣 , 等. 我国枸杞主产区生产现状调研及建议[J]. 中国中药杂志, 2014,39(11):1979-1984.
[26]
王国珍, 鲁占魁 . 宁夏枸杞根腐病病原的研究[J]. 微生物学通报, 1994,21(6):330-332.

RIGHTS & PERMISSIONS

Copyright reserved © 2020. Chinese Agricultural Association Bulletin. All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Agricultural Association or the Editorial Board, unless this is clearly specified.
Share on Mendeley
PDF(1248 KB)

Accesses

Citation

Detail

Sections
Recommended

/