Biosynthesis, Regulation, Physiological and Ecological Functions and Application of Soybean Isoflavones: A Review

PDF(1116 KB)
PDF(1116 KB)
Chinese Agricultural Science Bulletin ›› 2019, Vol. 35 ›› Issue (19) : 34-40. DOI: 10.11924/j.issn.1000-6850.casb19010002

Biosynthesis, Regulation, Physiological and Ecological Functions and Application of Soybean Isoflavones: A Review

Author information +
History +

Abstract

Soybean is high in isoflavones of secondary substances, the soybean isoflavones is involved in disease resistance, environmental adaptation and regulation of growth and development of the crop. Soybean isoflavones is also phyto-estrogens which is used to prevent and treat human many diseases and tumors. In this paper, of soybean isoflavones the structure, regulation and signals transduction in biosynthesis process, physiological and ecological functions, as well as its medical effects and application in human health is discussed carefully; furthermore, on soybean isoflavones the developing and research trend to be strengthened in the future is analyzed, these provide valuable theoretical information for relevant researches.

Key words

soybean isoflavones; biosynthesis pathway; disease resistance; growth and development; application

Cite this article

Download Citations
Biosynthesis, Regulation, Physiological and Ecological Functions and Application of Soybean Isoflavones: A Review. Chinese Agricultural Science Bulletin. 2019, 35(19): 34-40 https://doi.org/10.11924/j.issn.1000-6850.casb19010002

References

[1] 王金陵. 大豆的生态类型与大豆的栽培和育种[J]. 中国农业科学, 1961, (1): 24–27.
[2] Anderson J J B, Anthony M S, Cline J M, et al. Health potential of soy isoflavones for menopausal women[J]. Public Health Nutr, 1999, 2(4): 489–504.
[3] 汪涌, 刘凡, 胡玉珍, 等. 金雀异黄素对肾癌细胞系GRC-1细胞生物学行为的影响[J]. 第四军医大学学报, 2002, 23(17): 1580–1583.
[4] 张延坤, 马燕. 大豆异黄酮的特性及其特殊生理功能[J]. 解放军预防医学杂志, 2003, 21(4): 307–310.
[5] Khan H, Marya, Amin S, et al. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects[J]. Biomed Pharmacother, 2018, 101: 860–870.
[6] Zhou Y J, Gao W, Rong X, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J Am Chem soc, 2012, 134(6): 3234–3241.
[7] Serra A, Macià A, Maria-Paz R. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids[J]. Food Chem, 2012, 130(2): 383–393.
[8] 马海田. 异黄酮植物雌激素对动物生长及其吸收机理的研究[D]. 南京: 南京农业大学, 2005.
[9] Graham T L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates[J]. Plant Physiol, 1991, 95(2): 594–603.
[10] Munro I C, Harwood M, Hlywka J J, et al. Soy isoflavones: A safety review[J]. Nutr Rev, 2003, 61 (1): 1–33.
[11] Wang H, Murphy P A. Isoflavone content in commercial soybean foods[J]. J Agri Food Chem, 1994, 42(8): 1666–1673.
[12] 杜丽娜, 张存莉, 朱玮, 等. 植物次生代谢合成途径及生物学意义[J].西北林学院学报, 2005, 20(3): 150–155.
[13] Latunde-Dada A O, Cabello-Hurtado F, Czittrich N, et al. Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase[J]. J Biol Chem, 2001, 276(3): 1688–1695.
[14] Shafiq M, Singh Z. Pre-harvest spray application of phenylpropanoids influences accumulation of anthocyanin and flavonoids in ‘Cripps Pink’ apple skin[J]. Sci Hortic-Amsterdam, 2018, 233: 141–148.
[15] Morkunas I, Naro?na D, Nowak W, et al. Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine[J]. J Plant Physiol, 2011, 168: 424–433.
[16] Akashi T, Aoki T, Ayabe S. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice[J]. Plant Physiol, 1999, 121(3): 821–828.
[17] Steele C L, Gijzen M, Qutob D, et al. Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean[J]. Arch Biochem Biophys, 1999, 367(1): 146–150.
[18] Jung W, Yu O, Lau S-M C, et al. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes[J]. Nat Biotechnol, 2000, 18: 208–212.
[19] Yu O, Shi J, Hession A O, et al. Metabolic engineering to increase isoflavone biosynthesis in soybean seed[J]. Phytochemistry, 2003, 63 (7): 753–763.
[20] 王艳, 武林, 孙梦阳, 等.不同生育时期大豆异黄酮合成相关酶基因表达的分析[J], 大豆科学, 2012, 31(6): 887–893.
[21] Oh H D, Yu D J, Chung S W, et al. Abscisic acid stimulates anthocyanin accumulation in ‘Jersey’ highbush blueberry fruits during ripening[J]. Food Chem, 2018, 244: 403–407.
[22] Enoki S, Hattori T, Ishiai S, et al. Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues[J]. J Plant Physiol, 2017, 219: 22–27.
[23] Gra?a J P da, Ueda T E, Janegitz T, et al. The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max[J]. Phytochemistry, 2016, 131: 84–91.
[24] Ni J, Dong L, Jiang Z, et al. Salicylic acid-induced flavonoid accumulation in Ginkgo biloba leaves is dependent on red and far-red light[J]. Ind Crop Prod, 2018, 118: 102–110.
[25] Li X, Zhang L, Ahammed G J, et al. Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L.[J]. J Plant Physiol, 2017, 214: 145–151.
[26] Jing X, Wang H, Gong B, et al. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew[J]. Plant Physiol Bioch, 2018, 124: 77–87.
[27] Coutos-Thévenot P, Poinssot B, Bonomelli A, et al. In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter[J]. J Exp Bot, 2001, 52(358): 901–910.
[28] Hain R, Bieseler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol[J]. Plant Mol Biol, 1990, 15(2): 325–335.
[29] Hain R, Reif H,SKrause E,Set al. Disease resistance results from foreign phytoalexin expression in a novel plant[J]. Nature, 1993, 361: 153–156.
[30] Hipskind J D, Paiva N L. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis[J]. Mol Plant Microbe In, 2000, 13: 551–562.
[31] Sparvoli F, Martin C, Scienza A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.)[J]. Plant Mol Biol, 1994, 24: 743–755.
[32] 李润植,毛雪,李彩霞, 等. 棉花诱导抗蚜性与次生代谢相关酶活性的关系[J]. 山西农业大学学报(自然科学版). 1998, 18(2): 165–168.
[33] 朱宏波, 腾冰, 高凤兰, 等. 不同抗性大豆品种感染SMV1后若干生化变化[J]. 西北农业学报,2001, 10(3): 38–40.
[34] 段玉玺, 李海燕, 陈立杰, 等. 大豆不同品种根内类黄酮提取物对大豆胞囊线虫的抑制作用[J]. 大豆科学, 2014, (5): 724–727.
[35] 李海燕, 段玉玺, 陈立杰. 大豆植株中类黄酮对大豆胞囊线虫的毒杀效果及机理研究[J]. 作物杂志, 2015, (1): 57-60.
[36] 张军, 杨庆凯. 大豆接种SCN3 后根部酚类化合物含量动态分析[J]. 中国油料作物学报. 2001, 23(4): 44–47.
[37] Liang J, He J. Protective role of anthocyanins in plants under low nitrogen stress[J]. Biochem Bioph Res Co, 2018, 498: 946–953.
[38] Xu W,Peng H, Yang T, et al. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation[J]. Plant Physiol Bioch, 2014, 82: 289–298.
[39] Topcu Y, Dogan A, Sahin-Nadeem H, et al. Morphological and biochemical responses of broccoli florets to supplemental ultraviolet-B illumination[J]. Agr Ecosyst Environ. 2018, 259: 1–10.
[40] Shi L, Cao S, Chen W, et al. Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit[J]. Sci Hortic-Amsterdam, 2014, 179: 98–102.
[41] Janas K M, Cvikrová M, Palagiewicz A, et al. Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature[J]. Plant Sci, 2002, 163: 369-373.
[42] Ma M, Wang P, Yang R, et al. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B[J]. Food Chem, 2018, 250: 259–267.
[43] Liang B,Huang X,Zhang G,et al. Effect of lanthanum on plants under supplementary ultraviolet-B radiation: effect of lanthanum on flavonoid contents in soybean seedlings exposed to supplementary ultraviolet-B radiation[J]. J Rare Earth, 2006, 24(4): 613–616.
[44] 郭婕, 张杰. 黄豆、黑豆、黄豆芽总黄酮含量及抗氧化活性[J]. 周口师范学院学报, 2009, 26(5): 83–85, 92.
[45] 卢蕊, 武玲, 朱山, 等. 不同光照条件下大豆发芽过程中异黄酮含量的比较与抗氧化活性研究[J]. 粮舍与油脂, 2017, 30(6): 78–80.
[46] Kobayashi H, Graven Y N, Broughton W J, et al. Flavonoids induce temporal shifts in gene-expression ofSnod-box controlled loci inSRhizobiumSsp. NGR234[J]. Mol Microbiol, 2004, 51(2): 335–347.
[47] Pan B, Zhang F, Smith D L. Genistein addition to the soybean rooting medium increases nodulation[J]. J Plant Nutr, 1998, 21(8): 1631–1639.
[48] Maggilini M, Bonofiglio D, Marsico S, et al. Estrogen receptor alpha mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells[J]. Mol Pharmacol, 2001, 60(3): 595–602.
[49] Barnes S. Effect of genistein on in vitro and in vivo models of cancer[J]. J Nutr, 1995, 125(3): 777–783.
[50] Lopez-Lazaro M. Flavonoids as anticancer agents: Structure-activity relationship study[J]. Curr Med Chem Anti Canc Agents, 2002, 2(6): 691–714.
[51] 刘士君, 方长清, 李建华. 蛋白酪氨酸激酶抑制剂Genistein抑制肺癌细胞A549体外侵袭作用的研究[J]. 微生物学杂志, 2009, 29(6): 88–93.
[52] Nkengfack A E, Vouffo T W, Fomum Z T, et al. Prenylated isoflavanone from the roots of Erythrina sigmoidea[J]. Phytochemistry, 1994, 36(4): 1047–1051.
[53] 李洁. 异黄酮化合物的生物效能及在血吸虫病控制中的作用[J]. 中国病原生物学杂志,2006, 1(1): 62–63.
Share on Mendeley
PDF(1116 KB)

Collection(s)

Reviews

Agroecology

60

Accesses

0

Citation

Detail

Sections
Recommended

/