Selecting High Temperature Tolerant Germplasms from Africa Rice

PDF(1218 KB)
PDF(1218 KB)
Chinese Agricultural Science Bulletin ›› 2019, Vol. 35 ›› Issue (12) : 8-12. DOI: 10.11924/j.issn.1000-6850.casb18120035

Selecting High Temperature Tolerant Germplasms from Africa Rice

Author information +
History +

Abstract

To facilitate rice breeding with heat tolerance, we try to screen heat-resistant resources from Africa rice. Using the newly established cascade temperature method, six rice varieties from various regions of Africa were treated with high temperature in flowering period. The heat-tolerant index and integrated heat-tolerant index were calculated by the fertilization rate under different high-temperature treatments, and the integrated heat-tolerant index was selected to judge their heat tolerance. The heat-tolerant index of‘SDWG005’was greater than 0.9 among high-temperature treatments and its’integrated heat-tolerant index was 6.462, showing significant heat tolerance. The heat- tolerant index of‘SDWG001’was greater than 0.5 among hightemperature treatments and its’integrated heat-tolerant index was 4.163, showing strong heat tolerance. The heat-tolerant index of both‘SDBN001’and‘SDSL013’were lower than 0.5 under 37℃ treatment and greater than 0.6 under other treatments. The integrated heat-tolerant index of the two varieties was 3.694 and 3.406, respectively, showing relatively high heat resistance. By screening, an extremely strong heat-resistant variety ‘SDWG005’and two strong heat-resistant varieties‘SDWG001’and‘SDBN001’were obtained. The results suggest that some rice germplasm resources from Africa may have heat-tolerant genes, which can be used for breeding heat tolerant rice in the future.

Key words

African rice; heat tolerance; cascade temperature; fertilization rate; integrated heat-tolerance index

Cite this article

Download Citations
Selecting High Temperature Tolerant Germplasms from Africa Rice. Chinese Agricultural Science Bulletin. 2019, 35(12): 8-12 https://doi.org/10.11924/j.issn.1000-6850.casb18120035

References

[1]王志刚,王磊,林海,等.水稻高温热害及耐热性研究进展[J].中国稻米,2013,19(01):27-31.
[2]姚萍,杨炳玉,陈菲菲,等.水稻高温热害研究进展[J].农业灾害研究,2012,2(04):23-25+38.
[3]Yuan L P.Hybrid rice technology for food security in the world//International Conference on Sustainable Rice Systems.FAO, Rome, Italy, 2004.
[4]van Nguyen N, Ferrero A.Meeting the challenges of global rice production.Paddy Water Environment, 2006, 4:1-9.
[5][10] IPCC, 2013. Climate change 2013: the physical science basis. In: Stocker, T.F, Qin,D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex,V., Midgley, P.M. (Eds.), Summary for Policy Makers. Working Group I Contribution to the IPCC Fifth Assessment Report. Cambridge University Press,Cambridge, pp. 1–36.
[6]田小海,罗海伟,周恒多,等.中国水稻热害研究历史、进展与展望[J].中国农学通报,2009,25(22):166-168.
[7]Cai-Yuan L I, Peng C H, Zhao Q B, et al. Characteristic analysis of the abnormal high temperarure in 2003''s midsummer in Wuhan city[J]. Journal of Central China Normal University, 2004.
[8]杨太明,陈金华.江淮之间夏季高温热害对水稻生长的影响[J].安徽农业科学,2007(27):8530-8531.
[9]任义方,高苹,王春乙.江苏高温热害对水稻的影响及成因分析[J].自然灾害学报,2010,19(05):101-107.
[10] IPCC, 2013. Climate change 2013: the physical science basis. In: Stocker, T.F, Qin,D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex,V., Midgley, P.M. (Eds.), Summary for Policy Makers. Working Group I Contribution to the IPCC Fifth Assessment Report. Cambridge University Press,Cambridge, pp. 1–36.[6]田小海,罗海伟,周恒多,等.中国水稻热害研究历史、进展与展望[J].中国农学通报,2009,25(22):166-168.[7]Cai-Yuan L I, Peng C H, Zhao Q B, et al. Characteristic analysis of the abnormal high temperarure in 2003''s midsummer in Wuhan city[J]. Journal of Central China Normal University, 2004.[8]杨太明,陈金华.江淮之间夏季高温热害对水稻生长的影响[J].安徽农业科学,2007(27):8530-8531.[9]任义方,高苹,王春乙.江苏高温热害对水稻的影响及成因分析[J].自然灾害学报,2010,19(05):101-107.[10]闫浩亮, 潘幸福, 陈建珍,等. 田间高温严重降低杂交水稻制种的异交结实[J]. 中国水稻科学, 2015, 29(1):106-110.
[11]赵森, 于江辉, 周浩,等. 抽穗开花期耐高温的爪哇稻资源筛选[J]. 植物遗传资源学报, 2013, 14(3).
[12]杨梯丰, 张少红, 王晓飞,等. 水稻抽穗开花期耐热种质资源的筛选鉴定[J]. 华南农业大学学报, 2012, 33(4):585-588.
[13]陈建珍,闫浩亮,刘科,等.大穗型水稻品种抽穗开花期遭遇高温后的结实表现[J].中国农业气象,2018,39(02):84-91.
[14]田小海,松井勤,李守华,等.水稻花期高温胁迫研究进展与展望[J].应用生态学报,2007(11):2632-2636.
[15]张鑫. 夜间增温对水稻生长发育的影响[D].中国农业科学院,2016.
[16]李倩. 昼夜高温下水稻根源激素响应特征及其与产量的关系[D].华中农业大学,2012.
[17]Shi W, Muthurajan R, Rahman H, et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality.[J]. New Phytologist, 2013, 203(3):825-37.
[18]査中萍, 殷得所, 万丙良,等. 水稻种质资源开花期耐热性分析[J]. 湖北农业科学, 2016(1):17-19.
[19]Satake, T., and Yoshida, S. High temperature-induced sterility in indica rices at flowering. Jpn. J. Crop Sci., 1978, 47: 6–17.
[20]张标金. 特异耐高温水稻N22开花期耐高温遗传基础研究[D].华中农业大学,2009.
[21]Jagadish, S V K,Craufurd, P Q,Wheeler, T R. Phenotyping Parents of Mapping Populations of Rice for Heat Tolerance during Anthesis[J]. Crop Science,2008,48(3).
Share on Mendeley
PDF(1218 KB)

Accesses

Citation

Detail

Sections
Recommended

/