
Toxicity Test and Field Efficacy of Four Pesticides to Tetranychus urticae Koch
Zhang Xiuxia, Chen Xin, Mao Xiaohong, Li Jiaojiao, Zhang Ansheng
Toxicity Test and Field Efficacy of Four Pesticides to Tetranychus urticae Koch
The laboratory toxicity of ivermectin and other three pesticides to female adult mites of Tetranychus urticae was determined by slide impregnation method, and the field control efficacy test was carried out. The results of indoor toxicity test showed that the toxicity of these four insecticides against Tetranychus urticae was ranked as follows: ivermectin> fenpropathrin>beta-cyhalothrin>spironoethyl ester, and ivermectin exhibited the highest indoor toxicity to Tetranychus urticae with LC50 value of 0.01 mg/L. The results of field experiment showed that the control effect of 0.5% ivermectin EC at 9 and 18 g/hm 2 dosage were more than 90% at 3, 7 and 10 days after the treatment, and it could be used as the first choice to control female adult mites.
insecticides / Tetranychus urticae Koch / indoor toxicity / field efficacy {{custom_keyword}} /
表1 4种杀虫剂对二斑叶螨雌成螨的室内毒力(24 h) |
药剂名称 | 回归方程 | 斜率(SE) | LC50/(mg/L) | 95%置信/(mg/L) | R2 | 相对毒力倍数 |
---|---|---|---|---|---|---|
0.5%依维菌素乳油 | Y=7.006+3.474X | 3.474±0.0.349 | 0.01 | 0.021~0.054 | 0.962 | 2700.8 |
20%甲氰菊酯乳油 | Y=-3.604+2.826X | 2.826±0.253 | 18.847 | 59.472~93.035 | 0.984 | 1.433 |
2.5%高效氯氟氰菊酯水乳剂 | Y=-1.201+0.915X | 0.915±0.093 | 20.498 | 705.034~3080.026 | 0.954 | 1.318 |
22.4%螺虫乙酯悬浮剂 | Y=-4.747+1.573X | 1.573±0.239 | 1041.379 | 6170.315~35784.459 | 0.926 | 0.026 |
25 g/L联苯菊酯乳油 | Y=-3.180+2.222X | 2.222±0.151 | 27.008 | 102.018~264.111 | 0.971 | 1 |
表2 0.5%依维菌素乳油对二斑叶螨雌成螨的田间防治效果 |
制剂 | 有效成分 用量/ (g/hm2) | 虫口 基数/ 头 | 药后1 d | 药后3 d | 药后7 d | 药后10 d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | ||||||
0.5%依维 菌素乳油 | 18 | 3746 | 74.27 | 75.72 aA | 91.26 | 92.74 aA | 95.13 | 96.70 aA | 97.71 | 98.65 aA | |||
9 | 3848 | 68.17 | 69.72 bAB | 88.47 | 90.43 bB | 89.25 | 92.71 bB | 94.15 | 96.56 bB | ||||
4.5 | 3822 | 60.28 | 62.21 cB | 79.00 | 82.56 cC | 83.70 | 88.95 cC | 84.92 | 91.14 cC | ||||
25 g/L联苯菊酯乳油 | 22.5 | 3527 | 70.35 | 71.79 abA | 78.35 | 82.02 cC | 82.92 | 88.42 cC | 75.06 | 85.35 dD | |||
空白对照 | 3624 | -5.12 | — | -20.42 | — | -47.48 | — | -70.17 | — |
注:表格中的数据为4次重复的平均值。表中同列数据后不同小写字母表示差异极显著(P<0.01),不同大写字母表示差异显著(P<0.05)。下同。 |
表3 20%甲氰菊酯乳油对二斑叶螨雌成螨的田间防治效果 |
制剂 | 有效成分 用量/ (g/hm2) | 虫口 基数/ 头 | 药后1 d | 药后3 d | 药后7 d | 药后10 d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | ||||||
20%甲氰 菊酯乳油 | 120 | 3853 | 50.62 | 52.83 bB | 88.13 | 91.33 aA | 93.91 | 96.41 aA | 91.08 | 95.44 aA | |||
90 | 3523 | 42.31 | 44.90 cC | 80.16 | 85.51 cB | 88.10 | 92.99 bB | 84.08 | 91.85 bB | ||||
72 | 3531 | 35.53 | 38.41 dD | 76.54 | 82.87 dC | 83.91 | 90.52 cC | 78.92 | 89.21 cC | ||||
25 g/L联苯菊酯乳油 | 22.5 | 3528 | 69.37 | 70.74 aA | 80.41 | 85.70 bB | 79.39 | 87.86 dD | 64.46 | 81.80 dD | |||
空白对照 | 3424 | -4.69 | — | -36.95 | — | -69.77 | — | --95.30 | — |
表4 2.5%高效氯氟氰菊酯水乳剂对二斑叶螨雌成螨的田间防治效果 |
制剂 | 有效成分 用量/ (g/hm2) | 虫口 基数/ 头 | 药后1 d | 药后3 d | 药后7 d | 药后10 d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | 虫口 减退率/ % | 更正 防效/ % | ||||||
2.5%高效氯氟氰菊酯水乳剂 | 22.5 | 3467 | 72.09 | 76.19 aA | 80.67 | 85.37 aA | 80.24 | 87.93 aA | 74.44 | 86.44 aA | |||
11.25 | 3598 | 66.10 | 71.07 bB | 77.33 | 82.84 bB | 75.58 | 85.09 bB | 69.63 | 83.88 bB | ||||
5.625 | 3642 | 62.89 | 68.34 cB | 74.95 | 81.04 cB | 71.36 | 82.52 cC | 62.38 | 80.03 dC | ||||
25 g/L联苯菊酯乳油 | 22.5 | 3478 | 65.12 | 70.24 bcB | 76.39 | 82.13 bcB | 76.07 | 85.39 bB | 66.95 | 82.46 cB | |||
空白对照 | 3549 | -17.20 | — | -32.12 | — | -63.79 | — | -88.42 | — |
[1] |
AbstractThe two-spotted spider mite Tetranychus urticae Koch is one of the economically most important pests in a wide range of outdoor and protected crops worldwide. Its control has been and still is largely based on the use of insecticides and acaricides. However, due to its short life cycle, abundant progeny and arrhenotokous reproduction, it is able to develop resistance to these compounds very rapidly. As a consequence, it has the dubious reputation to be the“most resistant species” in terms of the total number of pesticides to which populations have become resistant, and its control has become problematic in many areas worldwide. Insecticide and acaricide resistance has also been reported in the ectoparasite Sarcoptes scabiei, the causative organism of scabies, and other economically important Acari, such as the Southern cattle tick Rhipicephalus microplus, one of the biggest arthropod threats to livestock, and the parasitic mite Varroa destructor, a major economic burden for beekeepers worldwide. Although resistance research in Acari has not kept pace with that in insects, a number of studies on the molecular mechanisms responsible for the resistant phenotype has been conducted recently. In this review, state-of-the-art information on T. urticae resistance, supplemented with data on other important Acari has been brought together. Considerable attention is given to the underlying resistance mechanisms that have been elucidated at the molecular level. The incidence of bifenazate resistance in T. urticae is expanded as an insecticide resistance evolutionary paradigm in arthropods. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
赵玉伟, 周玉书, 任健 . 二斑叶螨和朱砂叶螨对常用杀螨剂的敏感性比较[J]. 农药, 2006,45(6):418-419.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
姬秀枝, 杨麦生, 谢麦香 . 蔬菜二斑叶螨的危害及防治[J]. 中国果菜, 2007(05):36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
周晓肖, 江景勇, 邱莉萍 , 等. 乙唑螨腈对草莓二斑叶螨的控制作用[J]. 浙江农业科学, 2017,58(11):2003-2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
胡桂萍, 郑雪芳, 尤民生 , 等. 植物内生菌的研究进展[J]. 福建农业学报, 2010,25(2):226-234.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
何劲, 雷帮星, 宋贞富 , 等. 石斛内生细菌DEB-2对5种辣椒病原真菌的抑制作用[J]. 植物保护学报, 2014,41(2):157-162.
为了探明石斛内生细菌DEB-2菌株对贵州辣椒病原真菌的抑制作用,采用生长速率法测定了菌株DEB-2发酵液对辣椒黑斑病病原菌Alternaria alternate、辣椒疫病病原菌Phytophthora capsici、辣椒黑点炭疽病病原菌Colletotrichum capsici、辣椒红色炭疽病病原菌Colletotrichum gloesporioide和辣椒早疫病病原菌Alternaria solani的毒力。结果显示,内生菌DEB-2菌株能显著抑制5种辣椒病原真菌菌丝生长和孢子萌发,菌丝尖端均有不同程度变粗、膨大、崩解或者菌丝分枝增多的现象;分生孢子及芽管产生畸形。DEB-2菌株发酵液对5种病原菌菌丝生长的抑制中浓度EC50值分别是28.5、76.2、80.7、79.9、72.0 μL/mL;对辣椒疫病病原菌和早疫病病原菌分生孢子萌发的EC50分别为73.5 μL/mL和68.7 μL/mL。研究表明,DEB-2菌株能有效地同时抑制5种辣椒病原真菌菌丝生长和孢子萌发,对该5种辣椒真菌病原菌具有一定的生防潜力,可作为生防菌进行开发和应用。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
孟和生, 王开运, 姜兴印 , 等. 二斑叶螨发生危害特点及防治对策[J]. 昆虫知识, 2001,38(1):52-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
刘庆娟, 于毅, 刘永杰 , 等. 二斑叶螨的发生与防治研究进展[J]. 山东农业科学, 2011(09):99-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
宫亚军, 石宝才, 王泽华 , 等. 新型杀螨剂-联苯肼酯对二斑叶螨的毒力测定及田间防效[J]. 农药, 2013,52(03):225-227,233.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
唐小凤, 王少丽, 张友军 , 等. 二斑叶螨对阿维菌素的抗药性及抗性基因的PASA检测技术[J]. 植物保护学报, 2014,41(01):67-73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
谭福杰 . 农业害虫抗药性测定方法[J]. 南京农业大学学报, 1987,4(增刊):107-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
孟和生, 王开运, 姜兴印 , 等. 桔全爪螨对常用杀螨剂的抗药性测定[J]. 农药, 2000,39(2):26-28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
FAO. Revised method for spider mites and their eggs (e.g. Tetraychus spp. and Panonychus ulmi Koch)[J]. FAO Plant Production and Protection, 1980,21:49-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
刘刚 . 依维菌素[J]. 湖南农业, 2007(02):22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
王佩圣, 王桂莲, 王继青 , 等. 0.5%依维菌素EC防治大白菜小菜蛾药效试验[J]. 中国蔬菜, 2001(05):38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
贝亚维, 陈笑芸, 顾秀慧 , 等. 依维菌素和阿维菌素对小菜蛾和美洲斑潜蝇田间防治效果比较[J]. 中国蔬菜, 2001(06):19-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
匡海源, 程立生 . 关于区分朱砂叶螨和二斑叶螨两个近似种的研究[J]. 昆虫学报, 1990,33(1):109-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
牛永浩, 周长勇, 花蕾 , 等. 4种杀螨剂对二斑叶螨实验种群的致毒作用[J]. 上海交通大学学报:农业科学版, 2008,26(3):251-253.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
程立生, 潘俊松 . 几种杀螨剂对二斑叶螨和朱砂叶螨的毒力测定[J]. 植物保护, 1994,20(4):18-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
赵卫东, 王开运, 姜兴印 , 等. 二斑叶螨对阿维菌素、哒螨灵和甲氰菊酯的抗性选育及其解毒酶活力变化[J]. 昆虫学报, 2003,46(6):788-792.
在室内模拟田间药剂的选择压力,用阿维菌素、哒螨灵和甲氰菊酯对二斑叶螨Tetranychuc urticae逐代处理,以选育其抗性种群。选育至12代,对阿维菌素抗性增长到6.72倍,对哒螨灵抗性增长到12.1倍,对甲氰菊酯抗性增长到19.9倍。酶抑制剂和离体酶活性的测定结果表明,阿维菌素抗性种群的多功能氧化酶和谷胱甘肽S-转移酶的活性均有所提高;二斑叶螨对哒螨灵的抗性可能与多功能氧化酶、羧酸酯酶的活性增强有关;而羧酸酯酶、多功能氧化酶和谷胱甘肽S-转移酶活性的增强可能是二斑叶螨对甲氰菊酯产生抗性的主要原因。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
任健, 周玉书, 赵玉伟 , 等. 二斑叶螨对阿维菌素的抗药性预测研究[J]. 中国农学通报, 2006,22(2):337-338.
阿维菌素以其新型的作用机制,已成为防治二斑叶螨的主要药剂。因此,预测抗药性是否产生及何时产生,成为当务之急。以选择压力为约杀死种群60%的剂量,对二斑叶螨进行室内汰选,每隔5代用玻片浸渍法对种群进行测定,求得毒力回归方程。结果表明,室内该螨对阿维菌素抗性发展较快,汰选至20代时抗性指数为8.09。并且,种群中已有抗性纯合子个体存在。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
喻国泉, 李冠雄, 王爱平 . 几种杀螨剂对二斑叶螨的药效试验[J]. 植物检疫, 1997,11(4):207-211.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
张安盛, 刘庆娟, 庄乾营 , 等. 3种杀螨剂对日光温室二斑叶螨的室内毒力和田间防效[J]. 江苏农业科学, 2014,42(10):135-137.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
周兴隆 . 二斑叶螨对阿维菌素、螺螨酯及甲氰菊酯的多重抗性研究[D]. 兰州:甘肃农业大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
刘庆娟, 刘永杰, 于毅 , 等. 二斑叶螨对七种杀螨剂的抗药性测定及其机理研究[J]. 应用昆虫学报, 2012,49(2):376-381.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
解晓军, 尹哲, 王璐 , 等. 6种杀螨剂对番荔枝二斑叶螨防治试验[J]. 农药科学与管理, 2015,36(10):42-44,51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |