
Online Calibration of Environmental Monitoring in Solar Greenhouse Based on Internet of Things
Hua Jing, Wang Xiujuan, Wang Haoyu, Guo Shaoxin, Kang Mengzhen
Online Calibration of Environmental Monitoring in Solar Greenhouse Based on Internet of Things
Greenhouse environmental conditions, especially temperature, play a crucial role in crop growth and development. Temperature is one of the main environmental factors that can be regulated in the greenhouse. However, under natural environment, the light condition takes effect on temperature level, which further influences the monitoring precision of air temperature. Based on Support Vector Machine (SVM) algorithm in machine learning, an intelligent algorithm was proposed which calibrated the monitored temperature according to the illumination level. By comparing the calibrated air temperatures with the monitored data, the results indicated that the proposed method could monitor accurately the air temperature without using insulation materials or shading treatment, which was the basis for regulating the environmental factors. With this method, online temperature data could be obtained using commonly-used industrial device, which could save cost and provide accurate data for greenhouse control.
solar greenhouse / temperature monitoring / online calibration / intelligent algorithm / remote calibration {{custom_keyword}} /
[1] |
赵俊芳, 郭建平, 张艳红 , 等. 气候变化对农业影响研究综述[J]. 中国农业气象, 2010(2):200-205.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
冶明珠, 郭建平, 蒋跃林 , 等. 气候变化对农作物气候适宜度影响研究进展[J]. 安徽农业科学, 2011(15):9104-9105,9134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
房世波, 沈斌, 谭凯炎 , 等. 大气[CO2]和温度升高对农作物生理及生产的影响[J]. 中国生态农业学报, 2010(5):1116-1124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
高洪蛟, 李奇 . 浅谈积温[J]. 黑龙江气象, 2017(2):15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
周溯 . 夏季自然通风日光温室温湿度试验研究与模拟优化[D]. 太原:太原理工大学, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
杨学坤, 蒋晓, 诸刚 . 温室环境控制技术的研究现状与发展趋势[J]. 中国农机化学报, 2013(4):16-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
李萍萍, 王纪章 . 温室环境信息智能化管理研究进展[J]. 农业机械学报, 2014,45(4):236-243.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
程曼, 袁洪波, 蔡振江 , 等. 基于全局变量预测模型的温室环境控制方法[J]. 农业工程学报, 2013,29(a01):177-183.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
罗黎晨 . 日光温室的环境特点及调控技术[J]. 农业科技与信息, 2007(1):25-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
王君, 于海业, 张蕾 . 温室环境控制系统的发展[J]. 中国农学通报, 2010,26(12):371-375.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
周长吉 . 现代温室工程[M]. 北京: 化学工业出版社, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
卢嫚, 李彦斌, 李仁忠 , 等. 温室内分布式温度监测系统[J]. 中国农机化学报, 2015(4):59-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
马万征, 马万敏 . 智能温室环境控制的研究现状及发展趋势[J]. 北方园艺, 2011(23):179-180.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
董伟, 朱建勇 . 基于多传感器的温室环境数据融合算法研究[J]. 物联网技术, 2013(2):16-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
程曼, 袁洪波, 张素 , 等. 基于多传感器数据融合的温室环境控制的研究[J]. 农机化研究, 2009(7):213-214,217.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
王媛彬 . 多传感器信息融合概述及其应用[J]. 传感器世界, 2010,16(12):6-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
左志宇, 毛罕平, 张晓东 , 等. 基于时序分析法的温室温度预测模型[J]. 农业机械学报, 2010(11):173-177,182.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
陈俐均, 杜尚丰, 李嘉鹏 , 等. 温室环境温度预测自适应机理模型参数在线识别方法[J]. 农业工程学报, 2017(z1):315-321.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |