Carbon Dynamics Simulated on BIOME-BGC Model: Wudaoliang Grassland Ecosystem in the Qinghai-Tibet Plateau

PDF(1546 KB)
PDF(1546 KB)
Chinese Agricultural Science Bulletin ›› 2019, Vol. 35 ›› Issue (7) : 83-89. DOI: 10.11924/j.issn.1000-6850.casb18100001

Carbon Dynamics Simulated on BIOME-BGC Model: Wudaoliang Grassland Ecosystem in the Qinghai-Tibet Plateau

Author information +
History +

Abstract

The Qinghai-Tibet Plateau is a sensitive region to climate change and grassland is the most widely distributed vegetation there. It is important to study the dynamics and trends of carbon in grassland ecosystem for understanding the impact of carbon on climate change. In this study, plant carbon, litter carbon, soil carbon and total carbon in Wudaoliang grassland ecosystem in the Qinghai-Tibet Plateau from 1961 to 2015 were simulated using BIOME-BGC model with localized parameters. The results showed that: (1) soil organic carbon was the main component of total carbon, accounted for 95% of total carbon sequestration, litter carbon and plant carbon was 4% and 1%, respectively; (2) the total carbon decreased slightly from 1961 to 2015 with a rate of -0.018%/a; plant carbon increased significantly with a growth rate of 0.187%/a; litter carbon decreased in these years, but there was a marked hysteresis to climate change; soil organic carbon (SOC) decreased ( -0.019%/a) with the increase of soil respiration rate due to warming, but its variation was small because of its strong resistance to external disturbance. The results indicate that warming leads to the increase of vegetation carbon, however, enhanced soil respiration causes a reduction in soil organic carbon and offsets the increase in vegetation carbon. As a result, warming leads to the decrease of total carbon.

Key words

simulation of carbon dynamics; BIOME-BGC Model; climate change; grassland ecosystem of Wudaoliang

Cite this article

Download Citations
Carbon Dynamics Simulated on BIOME-BGC Model: Wudaoliang Grassland Ecosystem in the Qinghai-Tibet Plateau. Chinese Agricultural Science Bulletin. 2019, 35(7): 83-89 https://doi.org/10.11924/j.issn.1000-6850.casb18100001

References

[1] Freitas C R D, Hall C M, Higham J. The climate-tourism relationship and its relevance to climate change impact assessment.[M]// Tourism, Recreation and Climate Change. 2005:29-43.
[2] Zheng D, Zhang Q, Wu S. Mountain Geoecology and Sustainable Development of the Tibetan Plateau[M]. Springer Netherlands, 2000.
[3] 王海波,马明国,王旭峰,等.青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素[J].干旱区资源与环境,2014,28(6):50-56.
[4] 严文超,孙庚,张春波,等.模拟增温和中度放牧对青藏高原东部高寒草甸生态系统净碳交换及组分的影响[J].应用与环境生物学报,2018,24(01):132-139.
[5] 刘夏. 气候变化对三江平原沼泽湿地NPP的影响研究[D]. 中国科学院研究生院(东北地理与农业生态研究所), 2016.
[6] 亓伟伟, 牛海山, 汪诗平,等. 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究[J]. 生态学报, 2012, 32(6):1713-1722.
[7] 叶建圣. 青藏高原植被净初级生产力对气候变化的响应[D]. 兰州大学, 2010.
[8] 杨兆平, 欧阳华, 徐兴良,等. 五道梁高寒草原土壤水分和植被盖度空间异质性的地统计分析[J]. 自然资源学报, 2010, 25(3):426-434.
[9] 韩其飞, 罗格平, 李超凡,等. 基于Biome-BGC模型的天山北坡森林生态系统碳动态模拟[J]. 干旱区研究, 2014, 31(3):375-382.
[10] 胡波, 孙睿, 陈永俊,等. 遥感数据结合Biome-BGC模型估算黄淮海地区生态系统生产力[J]. 自然资源学报, 2011,26(12):2061-2071.
[11] 李海涛, 沈文清, 桑卫国,等. MTCLIM模型(山地小气候模拟模型)的研究现状及其潜在应用[J]. 山地学报, 2001, 19(6):533-540.
[12] 王超. 应用BIOME-BGC模型研究典型生态系统的碳、水汽通量——半干旱地区吉林通榆的模拟[D]. 南京农业大学, 2006.
[13] Sun Q, Li B, Zhang T, et al. An improved Biome-BGC model for estimating net primary productivity of alpine meadow on the Qinghai-Tibet Plateau[J]. Ecological Modelling, 2017, 350:55-68.
[14] Wang X, Ma M, Song Y, et al. Coupling of a biogeochemical model with a simultaneous heat and water model and its evaluation at an alpine meadow site[J]. Environmental Earth Sciences, 2014, 72(10):4085-4096.
[15] ZHOU,C. Estimaiton of Net Primary Productivity in Tibetan Plateau[J]. Acta Geographica Sinica, 2004, 59(1):74-79.
[16] Thornton P E, Nan A R. Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model[J]. Ecological Modelling, 2005, 189(1):25-48.
[17] White M A, Thornton P E, Running S W, et al. Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls[J]. Earth Interactions, 2000, 4(3):1--84.
[18] Zhang Y, Cheng G, Xin L, et al. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed[J]. Hydrological Processes, 2013, 27(25):3762-3776.
[19] Yang Y, Fang J, Tang Y, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global Change Biology, 2010, 14(7):1592-1599.
[20] Yuanhe Yang. Large‐scale pattern of biomass partitioning across China’s grasslands[J]. Global Ecology amp; Biogeography, 2010, 19(2):268-277.
[21] Fan J, Zhong H, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass[J]. Climatic change, 2008, 86(3-4):375-396.
[22] Zhu L L, Rong Y P, Wang W G, et al. Effects of Grazing on the Net Ecosystem Exchange of Carbon Dioxide in Grassland Ecosystems(Research Review)[J]. Acta Agrestia Sinica, 2013, 21(1):3-10.
[23] 王俊峰. 长江源区沼泽与高寒草甸生态系统变化及其碳平衡对全球气候变化的响应[D]. 兰州大学, 2008.
[24] 王洋. 不同退化程度下高寒草甸土壤有机碳及团聚体特征研究[D]. 南京农业大学, 2012.
[25] 周万海, 冯瑞章, 满元荣. 黄河源区不同退化程度高寒草地土壤特征研究[J]. 草原与草坪, 2008, 2008(4):24-28.
[26] Yang Y S, Guo J F, Chen G S, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China[J]. Plant and Soil, 2009, 323(1-2):153-162.
[27] 朱士华, 张弛, 李超凡. 基于BIOME-BGC模型的新疆牧区生态系统碳动态模拟[J]. 干旱区资源与环境, 2016, 30(6):159-166.
[28] 李英年, 赵新全, 曹广民,等. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析[J]. 高原气象, 2004, 23(4):558-567.
[29] 黄银晓. 全球气候变化对陆地生态系统的影响[J]. 环境科学, 1993, 14(6):79-81.
[30] 石福孙, 陈华峰, 吴宁. 增温对川西北亚高山高寒草甸植物群落碳、氮含量的影响[J]. 植物研究, 2008, 28(6):730-736.
Share on Mendeley
PDF(1546 KB)

Accesses

Citation

Detail

Sections
Recommended

/