Extreme Climate Events in Hainan During 1977-2017: Spatio-temporal Differences

陈汇林

PDF(1542 KB)
PDF(1542 KB)
Chinese Agricultural Science Bulletin ›› 2019, Vol. 35 ›› Issue (12) : 89-94. DOI: 10.11924/j.issn.1000-6850.casb18080040

Extreme Climate Events in Hainan During 1977-2017: Spatio-temporal Differences

  • 陈汇林
Author information +
History +

Abstract

The paper aims to study the spatio-temporal variation characteristics of extreme climatic events in Hainan. Based on the daily temperature and precipitation data of 21 stations in Hainan from 1977 to 2017 provided by the Agricultural Meteorological Service System of Hainan and 16 extreme climatic indexes (ECI), we calculated the linear trend of ECI at each station and conducted the trend and mean mutation test of ECI sequence, defined the extreme climate variability index ( ECVI ) and clustered the stations. The results showed that: the frequency and intensity of warm events in Hainan increased, the intensity of cold events decreased, and their frequency decreased as a whole; the frequency and intensity of extreme precipitation events generally rose; the regional difference of drought events was large, mainly with enhancement; there was no significant trend reversal of ECI at each station during the research period; the mean value mutations of warm events occurred the most, followed by cold events, while the precipitation related ECI mean value mutations occurred the least. Qionghai, Qiongshan and Sanya had the most mean value mutations, while Changjiang, Xisha and Dingan had the least mutations. The cluster results showed that the 21 stations could be divided into 2 classes and 4 discrete points.

Key words

extreme climate events; extreme climate variability index; cluster analysis; climate change

Cite this article

Download Citations
陈汇林. Extreme Climate Events in Hainan During 1977-2017: Spatio-temporal Differences. Chinese Agricultural Science Bulletin. 2019, 35(12): 89-94 https://doi.org/10.11924/j.issn.1000-6850.casb18080040

References

[1]任福民, 高辉, 刘绿柳,等. 极端天气气候事件监测与预测研究进展及其应用综述[J]. 气象, 2014, 40(7):860-874.
[2]翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾[J]. 中国工程科学, 2012, 14(9):55-63.
[3]Wang H J, Sun J Q, Chen H P, et al. Extreme climate in China: Facts, simulation and projection. Meteorologische Zeitschrift, 2012, 21(3): 279-304.
[4]付伟,许信旺,司红君,等.极端气温事件对安徽省农业生产的动态影响分析.气象科学,2014,34( 4) : 443-449.
[5]Lobell D B, Sibley A, Ortizmonasterio J I. Extreme heat effects on wheat senescence in India[J]. Nature Climate Change, 2012, 2(3):186-189.
[6]Sadro S, Melack J M. The Effect of an Extreme Rain Event on the Biogeochemistry and Ecosystem Metabolism of an Oligotrophic High-Elevation Lake[J]. Arctic Antarctic Alpine Research, 2012, 44(2):222-231.
[7]Yan Z, Jones P D, Davies T D, et al. Trends of Extreme Temperatures in Europe and China Based on Daily Observations[J]. Climatic Change, 2002, 53(1-3):355-392.
[8]Bonsal B R, Zhang X, Vincent L A, et al. Characteristics of Daily and Extreme Temperatures over Canada[J]. Journal of Climate, 2010, 14(9):1959-1976.
[9]IPCC.2013. Climate change 2013:The physical science basis[EB/OL].http://www.Ipcc.ch/Report/ar5/wgl/.
[10]Goswami B N, Venugopal V, Sengupta D, et al. Increasing Trend of Extreme Rain Events over India in a Warming Environment[J]. Science, 2006, 314(5804):1442.
[11]Shongwe M E, Oldenborgh G J V, Hurk B V D, et al. Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part II: East Africa[J]. Journal of Climate, 2011, 22(13):3718-3733.
[12]Haylock M R, Peterson T C, Alves L M, et al. Trends in Total and Extreme South American Rainfall in 1960 2000 and Links with Sea Surface Temperature[J]. Journal of Climate, 2010, 19(8):1490--1512.
[13]宋晨阳, 王锋, 张韧,等. 气候变化背景下我国城市高温热浪的风险分析与评估[J]. 灾害学, 2016(1):201-206.
[14]吴香华, 牛生杰, 祁莉,等. 中国南方6省1月份降水和极端低温的分布特征[J]. 大气科学学报, 2009, 32(6):807-814.
[15]Xu X, Du Y, Tang J, et al. 2011.Variations of temperature and precipitation extremes in recent two decades over China. Atmospheric Research, 101(1):143-154.
[16]李艳, 栗晗, 叶培龙,等. 1980-2010年华北地区极端高温天气气候事件特征分析[J]. 兰州大学学报(自然科学版), 2014, 50(6):832-837.
[17]张英华,李艳,李德帅,等.中国东部夏季极端高温的空间分布特征及其环流型.高原气象,2016, 35(2):469-483.
[18]蔡文香, 吴妍, 卢万合,等. 1961-2011a中国夏季35度以上极端高温事件的变化特征分析[J]. 干旱区资源与环境, 2015, 29(9):144-147.
[19]任正果, 张明军, 王圣杰,等. 1961—2011年中国南方地区极端降水事件变化[J]. 地理学报, 2014, 69(5):640-649.
[20]李培都, 司建华, 冯起,等. 1958—2015年敦煌及周边地区极端降水事件的时空变化特征[J]. 高原气象, 2018(2).
[21]王萃萃, 翟盘茂. 中国大城市极端强降水事件变化的初步分析[J]. 气候与环境研究, 2009, 14(5):553-560.
[22]邹用昌, 杨修群, 孙旭光,等. 我国极端降水过程频数时空变化的季节差异[J]. 南京大学学报(自然科学), 2009, 45(1):98-109.
[23]王春学, 马振峰, 秦宁生,等. 四川盆地区域性暴雨过程的识别及时空变化特征[J]. 气象科技, 2016, 44(5):776-782.
[24]王志福, 钱永甫. 中国极端降水事件的频数和强度特征[J]. 水科学进展, 2009, 20(1):1-9.
[25]张利平, 杜鸿, 夏军,等. 气候变化下极端水文事件的研究进展[J]. 地理科学进展, 2011, 30(11):1370-1379.
[26]郑祚芳, 王在文, 高华. 北京地区夏季极端降水变化特征及城市化的影响[J]. 气象, 2013, 39(12):1635-1641.
[27]王咏梅, 张红雨, 郭雪,等. 山西省近48a高温和强降水极端事件变化特征[J]. 干旱区研究, 2012, 29(2):289-295.
[28]刘海涛, 杨洁. 1951—2015年北京极端降水变化研究[J]. 中国农学通报, 2018(1):109-117.
[29]杨馥祯, 吴胜安. 近39年海南岛极端天气事件频率变化[J]. 气象, 2007, 33(3):107-113.
[30]薛毅, 陈立萍.统计建模与R软件[M]. 北京:清华大学出版社,2007:297-304.
[31]黄嘉佑, 李庆祥.气象数据统计分析方法[M]. 北京:气象出版社,2015:60-61,497-501.
[32]于昆.2009. 基于Mann-Whitney算法的非参数控制图[D]. 天津:天津大学.
[33]JiaweiHan, MichelineKamber, JianPei,等.数据挖掘概念与技术[M]. 北京,机械工业, 2012:309-311.
[34]党秋月,陆月明..基于OPTICS可达图的自动识别簇方法[J]. 计算机应用, 2012 ,32(a02):19-21.
[35]余锦华, 祁淼, 孙齐颖,等. 中国东部夏季极端降水统计特征及其与ElSNi?o的联系[J]. 大气科学学报, 2018(1). 77-84.
[36]武文博, 游庆龙, 王岱, 等. 2018. 中国东部夏季极端降水事件及大气环流异常分析 [J]. 气候与环境研究, 23 (1): 47?58.
[37]Gershunov A, Barnett T P. ENSO Influence on Intraseasonal Extreme Rainfall and Temperature Frequencies in the Contiguous United States: Observations and Model Results[J]. Journal of Climate, 2010, 11(7):1575-1586.
[38]杨续超, 陈锋, 祝炜平,等..城市化对浙江省夏季极端高温事件的影响[J]. 热带气象学报, 2014,30(4):719-726.
Share on Mendeley
PDF(1542 KB)

Collection(s)

GAOL 13: CLIMATE ACTION

19

Accesses

0

Citation

Detail

Sections
Recommended

/