Review on Chemical Root-control Technology of Woody Plants
Author information+
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
Collapse
History+
Received
Revised
Accepted
Published
2018-05-31
2018-07-12
2018-07-24
2019-11-04
Issue Date
2019-11-04
Abstract
To evaluate the functions of chemical root-control technology in container seedlings, we reviewed the research progress, theories, techniques and methods of chemical root-control. The main purpose of the root-control technology is to prevent the deformity of the root system of the seedlings planted in containers. Chemical root-control agents can prevent roots from twining and hyperplasia, promote uptake of water and nutrients, and therefore increase the survival rates of the seedlings and promote the growth during later stages. At present, copper (Cu) and zinc (Zn) reagents are widely used, as well as trifluralin, ethylene phosphorus and growth regulators. Chemical root-control technology is mainly applied to container breeding of woody plants because woody plants have strong taproots. Chemical root-control is one of the important technologies to effectively control root development and is essential for improving the quality of seedlings of woody plants.
Review on Chemical Root-control Technology of Woody Plants. Chinese Agricultural Science Bulletin. 2019, 35(31): 21-25 https://doi.org/10.11924/j.issn.1000-6850.casb18050161
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 何健峰. 草本与木本水培植物根系诱导技术研究[D].中南林业科技大学,2016. [2] 曹佼. 基于8种植物根系的抗拉模型分析[D].大连理工大学,2013. [3] 徐琨,李芳兰,苟水燕,包维楷. 岷江干旱河谷25种植物一年生植株根系功能性状及相互关系[J]. 生态学报,2012,32(01):215-225. [4] Markesteijn L, Poorter L. Seedling root morphology and biomass allocation of 62 tropical species in relation to drought and shade-tolerance. Journal of Ecology, 2009, 97(2):311-325. [5] Wright I J, Westoby M. Differences in seedling growth behavior among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology, 1999, 87(1):85-97. [6] Huang Y, Guo Y H. Root Distribution Characteristics of Haloxylon ammodendro (Mey. ) Bunge Plahiation. Acta Agrestia Sinica, 2009, 17(1):84-87. [7] 周仁超,姚崇怀紫斑牡丹胚培养与植株再生(简报)[J].亚热带植物科学,2001,30(3):62-63. [8] Bell, T. I. W. 1978. The effect of seedling container restrictions on the development of Pinus Caribaea roots. pp. 91-95, In E. Van Eerden and J. M. Kinghorn (Eds.) Proc. Root Form of Planted Trees Symposium, Victoria, British Columbia. Ministry of Forests/Canadian Forestry Service Joint Report No. 8, 357 pp. [9] Kosuta S, Hamel C, Dalpé Y, et al. Copper release from chemical root-control baskets in hardwood tree production[J]. Journal of Environmental Quality, 2002, 31(3):910-916. [10] 徐洪雨,王英宇,宋桂龙,韩烈保.华北土石山区公路边坡常见植物根系地下分布特征[J].中国水土保持科学,2013,11(02):51-58. [11] 单长卷,梁宗锁黄土高原刺槐人工林根系分布与土壤水分的关系[J].中南林学院学报,2006,26(1):19-22 [12] 朱海军. 薄壳山核桃容器苗培育关键技术研究[D].南京林业大学,2016. [13] Timmer V R, Miller B D. Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container grown red pine seedlings.[J]. New Forests, 1991, 5(4):335-348. [14] Johnson F. Using Chemicals to Control Root Growth in Container Stock: A Literature Review [J]. NEST Technical Report, TR-026, April 1996. [15] Sibley J L, Ruter J M, Eakes D J. Root membrane thermostability of red maple cultivars[J]. Journal of Thermal Biology, 1999, 24(1):79-89. [16] Davis A S, Jacobs D F. Quantifying root system quality of nursery seedlings and relationship to outplanting performance[J]. New Forests, 2005, 30(2-3):295-311. [17] 樊补秀. 大树控根育苗技术在苗圃地的种植试验研究[J]. 河南农业, 2016(23):35-36. [18] 毛远峰. 大树控根育苗技术研究效益分析[C]// 建筑科技与管理学术交流会. 2015. [19] 翟敏. 薄壳山核桃容器育苗及嫁接技术研究[D].南京农业大学,2011. [20] 殷芳芳. 4年生青冈、赤皮青冈容器苗控根和抗风研究[D].浙江农林大学,2014. [21] Street H E, Stuart R. Studies on the Growth in Culture of Plant Cells: IV. THE INITIATION OF DIVISION IN SUSPENSIONS OF STATIONARY-PHASE CELLS OF ACER PSEUDOPLATANUS L.[J]. Journal of Experimental Botany, 1969, 20(64):556-571. [22] 苏晶.牡丹容器苗的控根技术研究[D]. 南京:南京农业大学, 2007. [23] Wenny D L, Woollen R L. Chemical root pruning improves the root system morphology of containerized seedlings.[J]. Western Journal of Applied Forestry, 1989, 4(1):15-17. [24] 刘勇.兴安落叶松容器苗化学剪根效果与根生长潜力测定的研究明.北京林业大学学报,1991,13(2):15—18. [25] Baker J F, Burrows N L, Keohane A E, et al. Chemical root pruning of kangaroo paw (Anigozanthos flavidus) by selected heavy metal carbonates[J]. Scientia Horticulturae, 1995, 62(4):245–253. [26] 吕昕.美国山核桃富根容器育苗技术的研究[D].南京林业大学,2015. [27] 周华.紫叶核桃子苗砧嫁接及容器育苗根控技术研究[D].南京农业大学,2005. [28] 孙盛,董凤祥,彭祚登,张华.容器育苗化学控根技术[J].世界林业研究,2006,(05):33-37. [29] 朱晓婷,林夏珍. 化学控根试剂对大叶桂樱容器苗生长的影响 [J]. 园林花卉, 2011, 12:62-65. [30] 王静. 容器育苗中化学控根技术的研究[A]. 中国林学会.第九届中国林业青年学术年会论文摘要集[C].中国林学会:,2010:1. [31] 曲良谱,喻方圆,张新. 苦楝容器苗育苗技术研究[J]. 林业科技开发,2008,(06):103-106. [32] 曲良谱,喻方圆,张新. 枫杨容器苗育苗技术研究[J]. 江苏林业科技,2008,(02):9-12+19. [33] 刘艺玮. 刨花润楠育苗技术研究[D].中南林业科技大学,2015. [34] 白云凤,吴世乐,徐远.罗汉松容器苗控根技术的研究[J].福建农业,2015(02):75-76. [35] Ambrosini V G, Rosa D J, Corredor Prado J P, et al. Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.)[J]. Plant Physiology Biochemistry, 2015, 96(12):270-280. [36] Melanie D J, Steven K, Anne F. Field performance of pine stock types Two-year results of a trial on interior lodge pole seedlings grown inStyroblocks, Copperblocks, or Air Blocks[J].Journal of Ecosystems and Management, 2002,2(1). [37] Kirk W, Shake CJ. Incident irradiance and cupric hydroxide container treatment effects of early growth and development of containter-grown Pawpaw seedings[J]. [38] 刘子嘉,陈运雷,蔡开朗,刘翠华.化学控根试剂对沉香容器苗生长影响[J].安徽农业科学,2014,42(27):9430-9431. [39] Dong H, Burdett AN. Chemical root-pruning of Chinesepine seedlings raised incupric sulphide impregnated containers[J]. New Forests, 1986,1(1):67-73. [40] 刘勇. 硫化铜对容器苗的修根作用[J]. 北京林业大学学报, 1992, 14(2):32-36. [41] Whitcomb C E. Plant production in containers. Rev.[J]. 1988. [42] Landis D., Tinus R.W., MeDonald S.E.etal. The Container tree nursery manual, VOI, Two, Containers and growing media, USDA ,Forest Sevriee, Agri. Handbook 674.1990. [43] 孙盛. 环保型林木及花卉容器育苗化学控根技术研究北京林业大学硕士论文.2007. [44] 高焕章, 赵振军, 尹前进,等. 硫酸锌乳胶漆制剂对银荆容器播种苗生长的影响[J]. 湖北农业科学, 2011, 50(20):4221-4224. [45] 孙盛,彭祚登,董凤祥,张炜,王秀琴,芮飞燕.Cu,Zn等制剂对银杏容器苗的控根效果[J].林业科学,2009,45(07):156-160. [46] 尹秀华. 两种碳酸盐对假龙头控根效果的研究[D].山东农业大学,2009. [47] 赵梦炯,姜成英,吴文俊,马超,芦娟,陈炜青.Cu、Zn制剂对油橄榄容器苗生长和根系的影响[J].林业科学研究,2017,30(04):693-699. [48] 刘桂兰,董炳欣,董文辉推广容器苗是提高山区造林成活率的有效途径河南林业科技,2003,23(2):34-39. [49] Ruter P, Douglass F. Quantifying root system quality of nursery seedlings and relationship to out planting performance [J]. New Forests, 2005, 30(29):5-11. [50] Waston A, Mexal JG. Privenance variation and response to chemical root in Pinus greggi [J]. Seedlings Agrociencia, 2005, 33(4):25-30. [51] Simpson D G. NAA effects on conifer seedlings in British Columbia[C]. Combined Meeting of the Western Forest Nursery Associations. National Nursery Proceedings. Rose burg Orgon. Washington:USDAForest Service, 1990. [52] 张红心, 周燮. 吲哚丁酸对水稻和莴苣幼苗种子根长度及侧根原基发生的影响[J]. 植物生理学通讯, 2003, 39(5):453-454. [53] 刘晓娟. 根域限制对牡丹碳代谢和内源激素变化的影响[D].河南农业大学,2012. [54] 毕雷雷. 樟子松容器育苗技术的研究[D].南京林业大学,2014. [55] 侯元兆.现代林业育苗的理念与技术[J].世界林业研究,2007(04):24-29. [56] 王静. 元宝枫容器育苗基质配制及化学控根技术研究[D].北京林业大学,2011. [57] 奚旺, 刘勇, 马履一,等. 底部渗灌条件下水肥对华北落叶松容器苗生长及基质pH值、电导率的影响[J]. 林业科学, 2015, 51(6):36-43.