Seed and Seedling of Halostachys caspica: Response to Drought Stress

PDF(1147 KB)
PDF(1147 KB)
Chinese Agricultural Science Bulletin ›› 2019, Vol. 35 ›› Issue (26) : 52-56. DOI: 10.11924/j.issn.1000-6850.casb18040105

Seed and Seedling of Halostachys caspica: Response to Drought Stress

Author information +
History +

Abstract

Halostachys caspica was used as material, seed germination characteristics and seedling physiological change under drought stress were studied to confirm its adaptive capacity to drought stress. PEG was used to simulate drought stress, and the growth and physiological indexes during germination and seedling stage were detected. The results showed that high osmotic potential (-0.6 to -0.4 MPa) had stimulating effect on seed germination, promoted the initial germination rate and shortened the time to the final germination rate, and the final germination rate under high osmotic potential treatment was not significantly different from that of CK. The medium and low osmotic potential (- 2.0 to - 0.8 MPa) inhibited seed germination significantly, reduced the initial germination rate and prolonged the time to final germination rate. Seedlings of Halostachys caspica were stimulated and had positive physiological responses to medium and high osmotic potential (-0.7 to -0.3 MPa). Compared with CK, relative conductivity decreased while soluble sugar content, CAT activity, and POD activity showed an increasing trend. Based on the characteristics of seed germination and physiological changes of seedlings under PEG treatments, it is concluded that Halostachys caspica can germinate and grow well at -0.7 to -0.3 MPa osmotic potential.

Key words

Halostachys caspica; drought stress; seed germination; seedling; response

Cite this article

Download Citations
Seed and Seedling of Halostachys caspica: Response to Drought Stress. Chinese Agricultural Science Bulletin. 2019, 35(26): 52-56 https://doi.org/10.11924/j.issn.1000-6850.casb18040105

References

[1]杨景宁, 王彦荣. PEG模拟干旱胁迫对四种荒漠植物种子萌发的影响[J]. 草业学报, 2012, 21(6): 23-29.
[2]新疆植物志编辑委员会. 新疆植物志(第二卷第一分册)[M]. 乌鲁木齐: 新疆科技卫生出版社, 1993.
[3]Zhao K, Scmg J, Feng U, et al. Species, types, distribution, and economic potential of halophytes in China [J]. Plant Soi1, 2011, 342(1-2): 495-509.
[4]张冀, 杜驰, 张富春. 盐胁迫下盐穗木DNA聚合酶λ基因的克隆和表达分析[J]. 新疆农业科学, 2017, 54(2): 361-370.
[5]王虹, 齐政, 张富春. 不同浓度盐胁迫下盐穗木叶片结构的比较观察[J]. 新疆农业科学, 2016, 53(11): 2098-2105.
[6]王梅, 赵晨光, 王莹, 等. 盐穗木种群空间点格局对地下水埋深的响应[J]. 林业科学, 2015, 51(11): 17-24.
[7]王丽敏, 张霞, 张富春. 植物激素赤霉素和萘乙酸对盐穗木种子萌发的影响[J]. 新疆农业科学, 2014, 51(3): 504-510.
[8]韩张雄, 李利, 徐新文, 等. 盐穗木对盐渍荒漠区不同土壤水盐含量的适应机制研究[J]. 西北农林科技大学学报(自然科学版), 2014, 42(2): 167-172, 178.
[9]赵金香, 贾琦珍, 张国峰, 等. 盐穗木对卡拉库尔羊临床指标及血液生化指标的影响[J]. 江苏农业科学, 2011, 39(3): 277-280.
[10]阿斯古丽.伊斯马伊力, 牙库甫江.阿西木,张霞, 等. 盐穗木的染色体数目与核型分析[J]. 草业科学, 2013, 30(9): 1366-1368.
[11]曾幼玲, 蔡忠贞, 马纪, 等. 盐分和水分胁迫对两种盐生植物盐爪爪和盐穗木种子萌发的影响[J]. 生态学杂志, 2006, 25(9): 1014-1018.
[12]王丽敏, 张霞, 张富春. 水盐胁迫对盐穗木种子萌发的影响[J]. 种子, 2013, 32(12): 6-10.
[13]李玉霞, 周华荣. 干旱区湿地景观植物群落与环境因子的关系[J]. 生态与农村环境学报, 2011, 27(6): 43-49.
[14]韩占江, 程龙, 李志军, 等. 塔里木盆地7种藜科植物种子萌发特性的研究[J]. 种子, 2016, 35(9): 1-5.
[15]刘会良, 宋明方, 段士民, 等. 古尔班通古特沙漠南缘32种藜科植物种子萌发策略初探[J]. 中国沙漠, 2012, 32(2): 413-420.
[16]王学奎, 黄见良主编. 植物生理生化实验技术(第3版)[M]. 北京: 高等教育出版社, 2015.
[17]李合生主编. 现代植物生理学(第3版)[M]. 北京: 高等教育出版社, 2012.
[18]齐淑艳, 段继鹏, 郭婷婷, 等. 入侵植物牛膝菊种子萌发对PEG模拟干旱胁迫的响应[J]. 生态学杂志, 2014, 33(5):190-1194.
[19]梁新华, 史大刚. 干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响[J]. 干旱地区农业研究, 2006, 24(3): 108-110.
[20]周芳, 刘恩世, 孙海彦, 等. 水分胁迫对干旱锻炼后木薯叶片内脱落酸、脯氨酸及可溶性糖含量的影响[J]. 西南农业学报, 2013, 26(4): 1428-1433.
[21]康俊梅, 杨青川, 樊奋成. 干旱对苜蓿叶片可溶性蛋白的影响[J]. 草地学报, 2005, 13(3): 199-202.
Share on Mendeley
PDF(1147 KB)

Accesses

Citation

Detail

Sections
Recommended

/