The study aims to analyze the effect of drought treatment on the growth and accumulation of flavonoids in celery. The change of biomass, osmolyte, antioxidant enzyme system, key enzyme in flavonoids metabolize and flavonoid accumulation in celery variety‘Shenqin 1’are studied by solution culture under mild drought (10% PEG6000 treatment) and severe drought (30% PEG6000 treatment). In mild drought condition, compared with control, no significant difference in biomass and H2O2, O2ˉ·content was observed; proline and soluble sugar content, antioxidant enzyme activity, phenylalanine ammonia lyase (PAL), chalcone synthase (CHS) and chalcone isomerase (CHI) activity and apigenin and luteolin content increased significantly. Compared with those of control, the apigenin content in leaf blade and leaf stalk was increased by
36.05% and 40.35%, respectively, and luteolin content was increased by 34.39% and 43.09%, respectively. Under severe drought condition, compared with control, the biomass of celery was significantly decreased, the plant height, shoot dry weight and root dry weight reduced by 34.47% , 36.02% , 59.09% , respectively. Compared with control, no significant difference in proline and soluble sugar content was observed, H2O2, O2ˉ·content and antioxidant enzyme activity increased remarkably (CAT activity was significantly lower than mild drought treatment); there was no significant increase in apigenin and luteolin content, and CHS and CHI activity were significantly reduced compared with that under mild drought stress. The change of the indexes mentioned above was almost the same in leaf blade and leaf stalk. It is concluded that mild drought (10% PEG6000 treatment) could keep a normal growth and meanwhile promote the accumulation of flavonoids in celery.
Key words
celery; PEG6000 stress;biomass; flavonoids
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 赵璞,李梦,及增发,等.植物干旱响应生理对策研究进展[J].中国农学通报,2016,32(15):86-92
[2] Ramakrishna A, Ravishankar G A. Influence of abiotic stress signals on secondary metabolites in plants[J].Plant Signaling Behavior,2011,6(11):1720-1731.
[3] 黄璐琦, 郭兰萍.环境胁迫下次生代谢产物的积累及道地药材的形成[J.中国中药杂志,2007,32(4):277.
[4] 阎秀峰, 王洋, 李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007,27(6):2554-2562.
[5] Landry L G, Last R L.Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage[J].Plant Physiology,1995,109(4):1159-1166.
[6] Yamasaki H, Sakihama Y and Ikehara N. Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2[J].Plant Physiology,1997,115(4):1405-1412.
[7] Oh M M, Trick H N, Rajashekar C B. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce[J].Journal of Plant Physiology,2009,166(2):180-191.
[8] 李林. 干旱胁迫对益母草总生物碱和黄酮含量的影响[D].哈尔滨:东北林业大学,2009.
[9] 李自玉,王德炉, 闫小莉,等.干旱对苦丁茶品质的影响[J].贵州农业科学,2011,39(2):63-66.
[10] 杨蓓芬, 李钧敏. 东魁杨梅叶片次生代谢产物对光照与水分胁迫的响应[J].河南农业科学,2011,40(7):118-122.
[11] 李光跃,罗晓雅,孙窗舒,等.干旱胁迫对黄芪植株生长中黄酮类成份积累的影响[J].西北植物学报,2017,37(1):0138-0143
[12] 王改利,魏忠,贺少轩,等.土壤干旱胁迫对酸枣叶片黄酮类代谢及某些生长和生理指标的影响[J].植物资源与环境学报,2011,20(3):1-8
[13] 蒋德安,朱诚.植物生理学实验指导[M].成都:成都科技大学出版社,1999:83-87
[14] 高俊凤.植物生理学实验技术[M].西安:世 界 图 书 出 版 公 司,2000:194
[15] Patra HK, Kar M, Mishra D. Catalase activity in leaves and cotyledons during plant development and senescence [J]. Biochemie and Physiologie der Pflanzen.1978.
[16] 李合生.植物生理生化实验原理和技术[M]北京:高等教育出版社,2000.
[17] Lister C E, Lancaster J E, Walker J R L. Phenylalanine ammonia-lyase (PAL) activity and its relationship to anthocyanin and flavonoid levels in New Zealand-grown apple cultivars[J].American Society for Horticultural Science, 1996,121(2):281-285.
[18] 赵春. 不同生态条件下小麦籽粒品质形成及其生理基础[D]泰安:山东农业大学,2006.
[19] 王纪忠, 周青, 张国良, 等. 不同基质育秧条件下水稻秧苗对水分胁迫的响应[J].安徽农业科学, 2006, 34(5): 861-862.
[20] Hur J, Jung K H, Lee C H, et al. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice.[J].Plant Science, 2004,167(3):417-426.
[21] 燕平梅, 章艮山. 水分胁迫下脯氨酸的累积及其可能的意义[J].太原师范专科学校学报,2000,(4):29-30.
[22] 裴二芹,石云素,刘丕庆,等. 干旱胁迫对不同玉米自交系苗期渗透调节的影响[J].植物遗传资源学报,2010,11(1): 40-45
[23] 王兴顺. 黄岑幼苗对干旱胁迫的生理适应性反应[J].西北林学院学报,2014,29(1):55-59
[24] 杨书运,严平,梅雪英. 水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响[J].中国农学通报,2007,23(12):229-233
[25] 林琪, 侯立白, 韩伟, 等. 干旱胁迫对小麦旗叶活性氧代谢及灌浆速率的影响[J].西北植物学报,2003,23(12): 2152-2156.
[26] Kranner I. A Modulating Role for Antioxidants in Desiccation Tolerance[J]. Integrative Comparative Biology, 2005,45(5):734-740.
[27] 刘艳,蔡贵芳,陈贵林. 干旱胁迫对甘草幼苗活性氧代谢的影响[J].中国草地学报,2012,34(5):93-98
[28] 范苏鲁,苑兆和,冯立娟,等. 干旱胁迫对大丽花生理生化指标的影响[J].应用生态学报,2011,22(3):651-657
[29] 李雪凝,董守坤,刘丽君,等. 干旱胁迫对春大豆超氧化物歧化酶活性和丙二醛含量的影响[J].中国农学通报,2016,32(15): 93-97
[30] Treutter D. Significance of flavonoids in plant reistance: A review[J].Environmental Chemistry Letters, 2006, 4(3):147-157.
[31] 王锐.芹菜生长发育队UV-B辐射增强与土壤水分胁迫的响应[D].兰州:甘肃农业大学,硕士论文,2010
[32] 孙利,万勇善,刘风珍,等.花生不同品种叶片类黄酮含量和相关合成酶活性对PEG胁迫的响应[J].中国油料作物学报, 2014,36(2):198-205
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}