To investigate the effects of CO2 capture agent on photosynthetic characteristics, physiological and biochemical indices and yield traits of foxtail millet, the authors used‘Yugu 28’as experimental material and analyzed the indices under different concentrations of CO2 capture agent at flowering stage. In this experiment, 4 treatments were set up: N0 was no spraying of CO2 capture agent (CK), the concentration of N1, N2 and N3 was 2.25, 4.50 and 6.75 L/hm2, respectively. The results showed that photosynthetic characteristics, physiological and biochemical indices and yield traits of millet were significantly higher than those of control under N1, N2 and N3, and all peak values appeared under N2. Under N2, compared with CK, the contents of chlorophyll a, chlorophyll b and chlorophyll (a+b) increased by 41.8%, 53.8% and 48.2%, respectively; the photosynthetic rate, intercellular CO2, stomatal conductance and water use efficiency increased by 30.9% , 76.5% , 66.7% and 38.7% compared with that of CK, respectively; the soluble sugar and soluble protein content increased by 95.1% and 5.4- fold, respectively; the activity of SOD, POD and CAT increased by 26.7%, 86.8% and 90.0%, respectively; while the height of gravitational center decreased by 8.3%, and the bending force and culm lodging resistant index increased by 56.5% and 69.2%, respectively; the spike length, panicle grain mass, thousand grain mass, aboveground biomass and yield increased by 13.7%, 60.4%, 5.3%, 58.1% and 9.2% , respectively. As suggested above, it is of great importance to enhance photosynthesis, improve physiological and biochemical indices and increase yield of millet with applying certain concentrations of CO2 capture agent.
Key words
CO2 capture agent; foxtail millet; photosynthetic characteristics;physiological and chemical indices; yield traits
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Long S P, Ainsworth E A, Leakey A D B, et al. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations[J]. Science, 2006, 312: 1918-1921.
[2] 刘林甫. 光碳核肥在提高农作物产量中的效果分析[J]. 农家参谋, 2014, (10): 52-53.
[3] 牛银亭, 强学杰, 杜昌学, 等. 光碳核肥在棉花上的应用研究[J]. 棉花科学, 2013, 35(3): 29-31.
[4] 王其松, 应霄, 白照军. “光碳核肥”在葡萄生产上试验应用效果初报[J]. 河北林业科技, 2014, 5(6): 29-32.
[5] 殷常青, 费良军. 光碳核肥对设施豇豆生理特性、水分利用率及矿质营养的影响[J]. 中国农学通报, 2017, 33(21): 38-44.
[6] 石玉, 潘媛媛, 张毅, 等. 光碳核肥对盐胁迫下黄瓜幼苗生长抑制的缓解效应[J]. 西北农业学报, 2017, 26(5): 752-758.
[7] 杨洋. 光碳核肥引领中国第三次农业革命[J].江西农业, 2015, 01: 63-65.
[8] 陈福明, 陈顺伟. 混合液法测定叶绿素含量的研究[J].林业科学通讯, 1984, 02(2): 4 -8.
[9] 王晶英, 敖红, 张杰, 等. 植物生理生化实验技术与原理[M]. 哈尔滨:东北农业大学出版社, 2003. 22 -25, 108 -111.
[10] Dubois M, Gilles K A. Colorimetric method for determination of sugars and related substances[J]. Anal Chem, 1956, 28 (3): 350-356.
[11] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72 (1): 248-254.
[12] Dhindsar S, Plumb-Dhindsa P, Thorpe T. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. J Exp Bot, 1981, 32 (1): 93-101.
[13] Gao S, Ou-yang C, Tang L, et al. Growth and antioxidant responses in Jatrophacurcas seedling exposed to mercury toxicity[J]. J Haza Mat, 2010, 182 (1): 591-597.
[14] Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant Cell Physiol, 2001, 42 (11): 1265-1273.
[15] 蒋高明, 林光辉. 生物圈二号内生长在很高二氧化碳浓度下的几种植物光合能力的变化[J]. 科学通报, 1997, 42(4): 434-438.
[16] 王春乙, 郭建平, 王修兰, 等. CO2 浓度增加对C3、C4 作物生理特性影响的实验研究[J]. 作物学报, 2000, 26(6): 813-817.
[17] 张颖,王金春,薛庆林,等. CO2施肥对光合作用及相关生理过程的影响. 中国农学通报, 2006, 22(2): 212-215.
[18] Peet M M, Huber S C, Patterson D T. Acclimation to high CO2 in monoecious cucumbers[J]. Plant Physiol, 1986, 80: 63-67.
[19] 姜帅, 居辉, 刘勤, 等. CO2浓度升高对作物生理影响研究进展[J]. 中国农学通报, 2013, 29(18): 11-15.
[20] 张其德, 卢从明, 匡廷云. 大气CO2 浓度升高对光合作用的影响[J]. 植物学通讯, 1992, 9(4):18-23.
[21] 林丰平, 陈章和, 陈兆平, 等. 高CO2 浓度下豆科4种乔木幼苗的生理生化研究[J].植物生态学报, 1999, 23(3): 220-227.
[22] Singh R, Jwa N. Understanding the responses of rice to environmental stress using proteomics[J]. J Pro Res, 2013, 12 (11):
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}