The Relationship of Lightning Location System Data and Artificial Observation Thunderstorm Days in Beijing

Chinese Agricultural Science Bulletin ›› 2018, Vol. 34 ›› Issue (20) : 118-125. DOI: 10.11924/j.issn.1000-6850.casb18030028

The Relationship of Lightning Location System Data and Artificial Observation Thunderstorm Days in Beijing

Author information +
History +

Abstract

To solve the problem that the number of thunderstorm days cannot be obtained after the artificial observation stopped in Beijing, the relationship between the data of lightning location system (LLS) and the artificial observation thunderstorm days in Beijing is studied. The LLS monitoring data around 20 artificial observation stations in Beijing from 2008 to 2011 were selected in this study. Taking each station as the center, 1km for the distance, the numbers of lightning and lightning days were calculated from the LLS monitoring data around each station with the radius (r) from 1 to 20 km. To find the optimal method for converting LLS data into the thunderstorm days, the lightning days were calculated by three methods and compared with the numbers of artificial observation thunderstorm days from two aspects, respectively. The three calculation methods were the direct substitution method, the ground flash density method and the binary method. The two comparison aspects were the annual mean lightning days of 20 stations and the annual mean lightning days of each station. The results showed that the number of the annual mean lightning days in LLS monitoring with r=13 km was the closest to the number of the annual mean thunderstorm days. For the results obtained by the three methods, the binary method was the best, followed by the direct substitution method, and the ground flash density method was the worst. For the single observation station, there was no unified function relationship between the ground flash density around each station and the number of artificial observation thunderstorm days. However, the number of thunderstorm days for each station was accurately determined by using the equivalent observation radius for each station from the direct substitution method. The results show the relationship between the LLS data and the days of artificial observation thunderstorm in Beijing, which enables the thunderstorm days to be continually used as the basic data in the lightning protection and research in Beijing area.

Key words

Lightning location system; artificial observation; The number of thunderstorm days; lightning day; the binary method

Cite this article

Download Citations
The Relationship of Lightning Location System Data and Artificial Observation Thunderstorm Days in Beijing. Chinese Agricultural Science Bulletin. 2018, 34(20): 118-125 https://doi.org/10.11924/j.issn.1000-6850.casb18030028

References

[1] 严春银,吴高学,朱建章.区域雷灾易损性及其区划的实证分析[J].气象与环境学报,2007,23(1):17-21.
[2] 梅贞,陈水明,顾勤炜,等.1998~2004年全国雷电灾害事故统计[J].高电压技术,2007,33(12):173-176.
[3] 中国气象局.地面气象观测规范[S].北京:气象出版社,2003:24-26.
[4] 余海军,陈水明,朱建军,等.雷电定位系统监测雷电日与人工记录雷电日的比较[J].高电压技术, 2012,38(10):2742-2748.
[5] 刘梅,魏建苏,俞剑蔚,等.近57年江苏省雷暴变化趋势特征分析[J].热带气象学报,2010,26(2):227-234.
[6] Novák P, Kyznarová H. Climatology of lightning in the Czech Republic[J]. Atmospheric Research, 2010, 100(4): 318-333.
[7] 陈家宏, 郑家松, 冯万兴,等. 雷电日统计方法[J].高电压技术, 2006, 32(11):115-118.
[8] 钟颖颖,冯民学,周曾奎,等.闪电定位资料与目测雷暴日的对比分析[J].气象科学,2010,30(6):851-855.
[9] 骆方,覃彬全,余沛,等.重庆地区雷电日雷暴日关系研究[J].中国农学通报, 2012,28(35):291-296.
[10] 李家启,汪志辉,任艳,等.闪电定位系统与人工观测雷电日参数对比分析[J].气象科技, 2012,40(1):132-136.
[11] 王学良,张科杰,张义军,等.雷电定位系统与人工观测雷暴日数统计比较[J].应用气象学报, 2014,25(6):741-750.
[12] 刘岩,李征,程向阳,等.LD-Ⅱ和ADTD型闪电定位资料的对比分析[J].南京信息工程大学学报(自然科学版) .2015,7(4):380-384.
[13] 崔逊,高金阁,樊荣.WWLLN与江苏省ADTD闪电定位系统数据的对比分析[J].大气科学学报,2016,39(2):270-279.
[14] Zhang Wenjuan, Meng Qing, Zhang Yijun. Comparison of SAFIR and ADTD Lightning Detection Network in South China[A]. 中国科学技术协会、中国气象学会. Preprint Proceedings of the 11th Annual Meeting of China Association for Science and Technology China International Forum on Lightning Protection and Disaster Mitigation[C].中国科学技术协会、中国气象学会,2009:2.
[15] 李京校,郭凤霞,扈海波,等.北京及其周边地区SAFIR和ADTD闪电定位资料对比分析[J]. 高原气象,2017,36(4):1115-1126.
[16] Drüe C, Hauf T, Finke U, et al. Comparison of a SAFIR lightning detection network in northern Germany to the operational BLIDS network[J]. Journal of Geophysical Research Atmospheres, 2007,112(D18):D18114. DOI:10. 1029/2006JD007680.
[17] 王娟,谌芸.2009-2012年中国闪电分布特征分析[J].气象,2015,41(2):160-170.
[18] 刘岩,王振会,康凤琴,等.浙江和甘肃两地区地闪特征的初步对比分析[J].高原气象,2009,28(3):669-674.
[19] Wang K Y, Liao S A. Lightning, radar reflectivity, infrared brightness temperature, and surface rainfall during the 2-4 July 2004 severe convective system over Taiwan area[J]. J Geophys Res, 111(D5): D05206. DOI: 10. 1029/2005JD006411.
[20] 李家启,栾健,王鹏,等.闪电定位资料质量控制中小幅值地闪范围的研究[J].高电压技术,2014, 40(3):727-731.
[21] 包炳生,杨安良,刘西林,等.2009.闪电定位系统监测的雷电流幅值佐证技术探讨[C].杭州: 第26届中国气象学会年会.
[22] 孙荣恒,伊亨云,刘群荪.数理统计[M]. 重庆:重庆大学出版社, 2002:85-86.
[23] 童雪芳,王海涛,陈家宏,等.雷电定位系统地闪密度分布图与雷击故障相关性分析[J].高电压技术, 2009, 35(12):2924-2929.
[24] 马金福, 冯志伟.雷击地闪密度与雷暴日数的关系分析[J].气象科学, 2009, 29(5):674-678.
[25] 张烨方,冯真祯,曾金全.福建省闪电监测数据与雷暴日关系分析及片状函数研究[J].自然灾害学报, 2014,23 (1): 183-190.
Share on Mendeley

Accesses

Citation

Detail

Sections
Recommended

/