Isolation and Identification of a High Bacteriocin-producing Lactic Acid Bacterium

葛菁萍

PDF(1237 KB)
PDF(1237 KB)
Chinese Agricultural Science Bulletin ›› 2017, Vol. 33 ›› Issue (10) : 150-157. DOI: 10.11924/j.issn.1000-6850.casb16060059

Isolation and Identification of a High Bacteriocin-producing Lactic Acid Bacterium

  • 葛菁萍
Author information +
History +

Abstract

order to meet the market demand of bacteriocin and reduce the production cost, screening a high bacteriocin-producing bacterium and applying it to food production has become the focus of current research. In this study, a lactic acid bacterium 11MZ-5-2 with high bacteriocin-producing ability was isolated from liquid sample of pickle Chinese cabbage. The bacteriocin titer of strain 11MZ-5-2 was (344.47±5.50) IU/mL after 48 h fermentation. Strain 11MZ-5-2 was identified according to physiological and biochemical methods. Meanwhile, the phylogenetic tree was constructed based on its partial 16S rDNA sequence. The results showed that strain 11MZ-5-2 was a kind of rod gram-positive bacterium with no spores, the optimum temperature range was 30-37℃ and the salt-tolerance range was 0%-10%, and the optimum pH range was 5.5-6.5. The main aliphatic acid components of strain 11MZ-5-2 were C16:0, C18:0 and C18:1. The partial sequence of the 16S rDNA of strain 11MZ-5-2 was 1446 bp which was 99% similar withLactobacillus plantarum IDCC 3501. Strain 11MZ-5-2 was identified asL. plantarum .L. plantarum 11MZ-5-2 could be applied as a starter culture in food fermentation.Furthermore, the bacteriocins produced byL. plantarum 11MZ-5-2 could be used as preservatives in food to prevent bacterial pollution and prolong the shelf-life.

Key words

Bacteriocin; Lactobacillus plantarum; Isolation; Identification

Cite this article

Download Citations
葛菁萍. Isolation and Identification of a High Bacteriocin-producing Lactic Acid Bacterium. Chinese Agricultural Science Bulletin. 2017, 33(10): 150-157 https://doi.org/10.11924/j.issn.1000-6850.casb16060059

References

[1] 房春红, 刘杰, 许修宏. 乳酸菌素的研究现状和发展趋势[J]. 中国乳品工业, 2006, 34(2): 53-55.
[2] Lizziane K W, Fabrício Luiz T, Elaine C P. Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on?Listeria monocytogenes biofilm formation[J]. Food Science and Technology, 2015, 64(2): 586-592.
[3] Weerapong W, Laphaslada P, Amonlaya T, et al. Two putatively novel bacteriocins active against Gram-negative food borne pathogens produced by Weissella hellenica BCC 7293[J]. Food Control, 2015, 55: 176-184.
[4] Lei L and Pinglan L. Complete genome sequence of Lactobacillus paraplantarum L-ZS9, a probiotic starter producing class II bacteriocins[J]. Journal of biotechnology, 2016, 222: 6-15.
[5] 李铁军, 李爱云, 张晓峰. 乳酸菌抗菌机理研究进展[J]. 微生物学报, 2002, 29(5): 81-85.
[6] Sabrina D S S, Michele V, José Manuel D G, et al. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria[J]. Food Research International, 2014, 64: 527-536.
[7] 范丽平, 王丽娟, 张海松. 植物乳杆菌的分离鉴定及生长特性研究[J]. 安徽农业科学, 2012, 40(35): 17311-17313.
[8] 段超, 万翠香. 泡菜中植物乳杆菌的筛选及益生活性研究[J]. 食品工业科学, 2015, 36(24): 201-221.
[9] Marta H, Garriga?M, Aymerich T, et al. Biochemical characterization of lactobacilli from dry fermented sausages[J]. International Journal of Food Microbiology, 1993, 18(2): 107-113.
[10] Maria S, Katri H, Tiina M, et al. The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains[J]. International Dairy Journal, 2003, 13(4): 291-302.
[11] Saarela M, Hallama K, Mattil-Sandholm T, et al. The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains[J]. International Dairy Journal, 2003, 13(4): 291-302.
[12] Su Y N, Seok-Seong K, Cheol-Heui Y, et al. Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells[J]. Molecular Immunology, 2015, 64(1): 183-189.
[13] 武俊瑞, 李欣, 张苗, 等. 自然发酵酸菜汁中乳杆菌的分离鉴定[J]. 食品科学, 2012, 33(15): 191-194.
[14] 布坎南 R E, E吉本斯 N. 伯杰细菌鉴定手册[M]. 9版. 北京: 科学出版社, 1984: 677-821.
[15] 郑雯, 孙琳, 宋诙. 一株植物乳杆菌所产细菌素的性质及诱变筛选[J]. 食品科技, 2014, 39(10): 12-16.
[16] 刘书亮, 张艾青, 田刚, 等. 植物乳杆菌P158的生长曲线及其细菌素的特性[J]. 核农学报, 2009, 23(6): 1021-1025.
[17] 杨晓晖, 籍保平, 李博, 等. 泡菜中优良乳酸菌的分离鉴定及其发酵性能的研究[J]. 食品科学, 2005, 25(5): 130-134.
[18] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
[19] 张书光, 张云娟, 代卫东, 等. Viili乳制品中干酪乳杆菌的分离鉴定[J]. 微生物学杂志, 2012, 32(3): 47-52.
[20] 赵玉娟, 牛春华, 张雪, 等. 16S rRNA序列分析及其在乳酸菌分类、鉴定中的应用[J]. 食品科学, 2009, 30(7): 299-303.
[21] 凌代文,东秀珠. 乳酸细菌分类鉴定及实验方法[M]. 北京: 中国轻工业出版社, 1999: 6-38.
[22] 马凯, 李春玲, 程池. Lactobacillus的系统发育分析及分群[J]. 食品与发酵工业, 2007, 33(2): 27-35.
[23] Deeplina D, Arun G. Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim[J]. Food Science and Technology, 2015, 61(1): 263-268.
[24] Hanen B Ayed, Hana M, Noomen H, et al. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6[J]. Journal of Global Antimicrobial Resistance, 2015, 3(4): 255-261.
[25] 张艾青, 刘书亮, 敖灵. 产广谱细菌素乳酸菌的筛选和鉴定[J]. 微生物学通报, 2007, 34(4): 753-756.
[26] Blanca E G, Issac K O C, Scott E M, et al. Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms[J]. Food Control, 2008, 19(7): 670-680.
[27] Imran K, Sun Chul K. Probiotic potential of nutritionally improved Lactobacillus plantarum DGK-17 isolated from Kimchi – A traditional Korean fermented food[J]. Food Control, 2016, 60: 88-94.
[28] Fidel T. The role of muscle enzymes in dry-cured meat products with different drying conditions[J]. Trends in Food Science & Technology, 2006, 17(4): 164-168.
[29] 赵辉, 霍贵成, 王葳. 利用植物乳杆菌进行啤酒生物酸化的初步研究[J]. 酿酒科技, 2006, 9: 44-48.
[30] Takashi K, Yurie M, Miho K, et al. Bile acid-lowering properties of Lactobacillus plantarum Sanriku–SU3 isolated from Japanese surfperch fish[J]. Food Bioscience, 2016, 14: 41-46.
[31] Matheus de S B, Svetoslav D Todorov, Iskra I, et al. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate[J]. Food Microbiology, 2015, 46: 254-62.
[32] 范远景, 孙 锋, 黄云霞, 等. 一株LABR-X植物乳酸杆菌的产条件优化与所产小肽抗菌效果的研究[J]. 食品科学, 2008, 29(11): 383-386.
[33] Todorov S D, Dicks L M T. Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine[J]. Microbiological Research, 2006, 161(2): 102-108.
[34] 张杨, 孟祥晨. 自然发酵酸菜中乳杆菌的分离鉴定与多态性分析[J]. 2009, 37(2): 19-22.
[35] Matheus S B, Svetoslav D T, Cynthia H J, et al. Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes[J]. Food Control, 2015, 47: 147-153.
[36] Bouksaim M, Lacroix C, Audet P M, et al. Effects of mixed starter composition on nisin Z production by Lactococcus lactis subsp. lactis biovar. diacetylactis UL 719 during production and ripening of Gouda cheese[J]. International Journal of Food Microbiology, 2000, 59(3): 141-156.
[37] 张子健, 刘玉恩, 赵谦, 等. 植物乳杆菌C8-1产类细菌素的初步研究[J]. 中国乳品工业, 2010, 38(1): 15-22.
[38] Bujalace C, Jimenez-ValerI M, Moreno E, et al. Lack of correlation between in vitro antibiosis and in vivo protection against enteropathogenic bacteria by probiotic lactobacilli[J]. Research Microbiology, 2014, 165(1): 14-20.
Share on Mendeley
PDF(1237 KB)

Accesses

Citation

Detail

Sections
Recommended

/