Path Analysis of Water Surface Evaporation with Temperature and Precipitation: Changwu from 1979 to 2008

PDF(561 KB)
PDF(561 KB)
Chinese Agricultural Science Bulletin ›› 2017, Vol. 33 ›› Issue (9) : 89-93. DOI: 10.11924/j.issn.1000-6850.casb16050134

Path Analysis of Water Surface Evaporation with Temperature and Precipitation: Changwu from 1979 to 2008

Author information +
History +

Abstract

To reveal the effect of meteorological factors on water surface evaporation and determine main meteorological factors affecting water surface evaporation, the authors used correlation analysis and path analysis to analyze the relationship between water surface evaporation and other meteorological factors during 1979-2008 in Changwu. The results showed that: the variation coefficient of each meteorological factor was in suitable scope, which was in the following trend: temperature (CV=0.06) <water surface evaporation (CV=0.12) <precipitation (CV=0.24); there were correlations between water surface evaporation and other meteorological factors, and the correlation coefficients followed an order: temperature (r=0.930)>precipitation (r=0.765); as to the direct effect of path analysis, the influence of temperature on water surface evaporation was more significant, while the influence of the precipitation was small, and showed a negative effect; from the perspective of the indirect effect of path analysis, precipitation had effect on evaporation which was mainly affected by the average temperature. The influence of precipitation on water surface evaporation was mainly affected by temperature which was determined as the main factor.

Key words

water surface evaporation; precipitation; temperature; correlation coefficient; path analysis

Cite this article

Download Citations
Path Analysis of Water Surface Evaporation with Temperature and Precipitation: Changwu from 1979 to 2008. Chinese Agricultural Science Bulletin. 2017, 33(9): 89-93 https://doi.org/10.11924/j.issn.1000-6850.casb16050134

References

赵倩, 江鸿明, 孙美芝, 李林志, 辛庆国. 山东省区试小麦产量与产量构成因素的相关和通径分析[J]. 中国农学通报, 2011, 27(7): 42-45.
蔡甲冰, 刘钰, 徐迪, 史宝成. 基于通径分析原理的冬小麦缺水诊断指标敏感性分析[J]. 水利学报, 2008, 39(1): 83-90.
谢仲伦. 相关性通径分析问题剖析[J]. 农业系统科学与综合研究, 1996, 12(3): 161-167.
黄中艳. 云南干季月蒸发量与常规气象要素的关系[J]. 地理科学进展, 2010, 29(2): 138-144.
刘学锋, 于长文, 任国玉. 河北省近40年蒸发皿蒸发量变化特征及影响因素初探[J]. 干旱区地理2007, 30(4): 507-512.
徐仁. 水面蒸发量与各气象因素关系的通径分析[J]. 地下水, 2010, 32(4): 133-149 .
徐凤梅, 余卫东, 康邵钧. 商丘近44年蒸发量变化及其影响因子分析[J]. 气象科技, 2007, 35(4): 104-106.
张超, 杨秉赓. 计量地理学基础[M]. 北京:高等教育出版社, 2004.
陈伯龙, 左洪超, 高晓清. 干旱区气象因子对蒸发皿蒸发量的影响[J]. 高原气象, 2014, 33(5): 1251-1260.
刘广深, 徐冬梅, 许中坚, 王红宇, 刘维屏. 用通径分析研究土壤水解酶活性与土壤性质的关系[J]. 土壤学报, 2003, 32(3): 757-762.
Rong Y S. Wang W, Jiang H Y. Changes of pan evaporation in the upper reach of the Yangtze River[J]. Journal of Hydrodynamics, 2011, 23(4): 503-509.
方小明, 梁艳, 刘峰, 吕江山, 周佳, 程瀛. 影响平阳地区蒸发量的主要气象因素分析[J]. 现代农业科技, 2012(4): 11-13.
陈伯龙, 左洪超, 高晓清. 20 cm蒸发皿蒸发量的数学物理模型研究[J]. 地球物理学报, 2013, 56(2): 422-430.
杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法[J]. 生物学通报, 2010, 45(2): 4-6.
左洪超, 鲍艳, 张存杰. 蒸发皿蒸发量的物理意义近40年变化趋势的分析和数值实验研究[J]. 地球物理学报, 2006, 43(9): 680-688.
徐金鹏, 张晓萍, 张建军, 夏燕, 孙艳萍, 陈凤娟. 30年来长武县耕地数量与农业经济发展计量关系分析[J]. 干旱地区农业研究, 2012, 30(6): 221-227.
洪楠. 统计产品和服务解决方案教程[M]. 北京:清华大学出版社, 北方交通大学出版社, 2003.
William Mendenhall, Terry Sincich. 统计学[M]. 美国:机械工业出版社, 2009.
明道绪.通径分析的原理与方[J]. 农业科学导报, 1986, 1(4): 40-43.
邵光成, 俞双恩, 刘娜, 陈立娜, 郭瑞琪. 通径分析在冬小麦受渍胁迫诊断指标敏感性分析中的应用[J]. 应用基础与工程科学学报, 2011, 19(4): 527-534.
赵益新, 陈巨东. 通径分析模型及其在生态因子决定程度研究中的应用[J]. 四川师范大学学报: 自然科学版, 2007, 30(1): 120-123.
Share on Mendeley
PDF(561 KB)

Accesses

Citation

Detail

Sections
Recommended

/