Identification of SAMS Genes From Maize and Its Expression Under Adversity Stresses

Yu Aili,Zhao Jinfeng,Wang Gaohong,Du Yanwei,Li Yanfang and Zhang Zheng

PDF(2298 KB)
PDF(2298 KB)
Chinese Agricultural Science Bulletin ›› 2016, Vol. 32 ›› Issue (8) : 30-36. DOI: 10.11924/j.issn.1000-6850.casb15090139

Identification of SAMS Genes From Maize and Its Expression Under Adversity Stresses

  • Yu Aili, Zhao Jinfeng, Wang Gaohong, Du Yanwei, Li Yanfang, Zhang Zheng
Author information +
History +

Abstract

S-adenosy lmethionine synthetase is a key enzyme in plant metabolism. It could catalyze ATP and methionine synthesis of S-adenosy lmethionine. In this study, the parameter characteristics of 4 S-adenosy lmethionine synthetase members (ZmSAMS) in maize genome were analyzed by bioinformatics methods. The results showed that the parameters of the 4 members were close to each other. Different SAMS sequence alignment and evolution analysis indicated that the SAMS gene had a conserved sequence and structure in the process of evolution. Promoter cis-elements prediction and protein function analysis showed that the ZmSAMS genes might be involved in the physiological and biochemical processes such as stress response, transcriptional regulation, signal transduction, immune response and so on. Real-time PCR validated that the ZmSAMS genes took part in the stress response of drought, high temperature, low temperature, salt, ABA and so on. So the authors speculated that the ZmSAMS genes played certain roles in different stress responses. This study provided useful clues for further elucidation of the function and mechanism of ZmSAMS genes in stress response.

Key words

maize; S-adenosy lmethionine; stress

Cite this article

Download Citations
Yu Aili,Zhao Jinfeng,Wang Gaohong,Du Yanwei,Li Yanfang and Zhang Zheng. Identification of SAMS Genes From Maize and Its Expression Under Adversity Stresses. Chinese Agricultural Science Bulletin. 2016, 32(8): 30-36 https://doi.org/10.11924/j.issn.1000-6850.casb15090139

References

[1] Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperature: towards genetic engineering for stress tolerance[J].Planta,2003,218:1-14.
[2] 山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报,2002(9):27-31.
[3] Gantoni G L. Methylation of nicotinamide with a soluble enzyme system from rat liver[J].J Biol Chem,1951,189(1):203-216.
[4] Mathur M, Satpathy M, Sachar R C. Phytohormonal regulation of S-adenosylmethionine synthe tase by gibberellic acid in wheat aleurones[J].Biochim Biophys Acta,1992,1137(3):338-348.
[5] Gantoni G L. Methylation of nieotinamide with a soluble enzyme system from rat liver[J].Biol Chem,1951,189:203-216.
[6] Finkelstein J D. Methionin emetabolism in mamrnals[J].Nutrtr Biochem,1990,1:228-237.
[7] Lu S C. Regulation of hepatiec glutathione synihesis[J].Sem Liv Dis,1998,18:331-343.
[8] Chen X J, Liu G S. A review of the pathway of ethylene biosynthesis and the relevant genetic engineering[J].Journal of Tropical and Subtropical Botany,2002,10(1):83-98.
[9] Heby O, Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells[J].Trends Biochem Sci,1990,15:153-158.
[10] Smith D D, Summers P S. Phosphocholine synthesis in spinach:characterization of phoetha- nolamine N-methyltranferase[J].Physiol Plant,2000,108(3):286-294.
[11] Ma X, Wang Z, Qi Y, et al. Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress[J].Acta Botanica Sinica,2003,45(11):1359-1365.
[12] Lin F Y, Wang S Q, Hu Y G, et al. Cloning of a S-adenosylmethionine synthetase gene from broomcorn millet (Panicum miliaceum L.) and its expression during drought and re-watering[J].Acta Agronomica Sinica,2008,34(5):777-782.
[13] Hwang S S, Cheah S C, Kulaveerasingam H, et al. Molecular cloning and characterization of S-adenosylmethionine synthetase isolated from suspension culture cdna library of Oil Palm (Elaeis guineensis Jacq)[J].Pakistan Journal of Biological Sciences,2003,6(16):1468-1475.
[14] Fan J P, Bai X, Li Y, et al. Cloning and function analysis of gene SAMS from Glycine soja[J].Acta Agronomica Sinica,2008,34(9):1581-1587.
[15] Hua Y, Zhang B X, Cai H, et al. Stress-inducible expression of GsSAMS2 enhances salt tolerance in transgenic Medicago sativa[J].African Journal of Biotechnology,2012,11(17):4030-4038.
[16] 贾丽娜,张慧杰,张晏萌,等.玉米SAMS基因的克隆与序列分析[J].河北农业科学,2008,12(8):53 -55.
[17] 朱晶莹,王寒玉,张晏萌,等.玉米S-腺苷甲硫氨酸合成酶基因家族成员在盐胁迫条件下的差异表达[J].核农学报,2011(25):427-431.
[18] 赵晋锋,余爱丽,朱晶莹,等.玉米S-翔安甲硫氨酸合成酶基因(SAMS)逆境胁迫下的表达分析[J].河北农业大学学报,2010,33(5):13-17.
[19] Shinozaki K, Yamaguchi S K. A novel cis acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high salt stress[J].Plant Cell,1994(6):251-264.
[20] Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software Version 4.0[J]. Mol Biol Evol,2007,24:1596-1599.
[21] Sambrook J, Fritch E F, Maniatis T. Molecular cloning: A labor ator y manual[M].2nded. New York: Cold Spring Harbor Laboratory Press,1989.
[22] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J].Methods,2001,25:402- 408.
[23] Ma X I, Wang Z L, Qi Y C, et al. Isolation of S-adenosyl methionine synthetase gene from suaeda salsa and its differential expression under NaCl stress[J].Acta Botanica Sinica,2003,45(11):1359-1365.
[24] 余涛,支立峰,彭伦,等.烟草中一条新的S-腺苷甲硫氨酸合成酶基因的克隆及表达分析[J].武汉植物学研究,2004,22(4):277-283.
[25] 陈锐,陈亮,王士强,等.水分胁迫下小麦S-腺苷甲硫氨酸合成酶基因的半定量表达模式分析[J].麦类作物学报,2009,29:954-958.
[26] 周凯,宋丽艳,叶武威,等.陆地棉耐盐相关基因GhSAMS的克隆及表达[J].作物学报,2011,37:1012-1019.
[27] 李燕,孙伟,赵彦修,等.盐地碱蓬甲硫氨酸合成酶基因(SsMS)的克隆与表达分析[J].山东师范大学学报:自然科学版,2003,18:76-78.
[28] Sánchez-Aguayo I, Rodríguez-Galán J M, García R, et al. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants[J].Planta,2004,220:278-285.
[29] 王海震,王莹,刘定干.真核生物mRNA 3’非翻译区的功能[J].生物化学与生物物理进展,2008,35(9):980-985.
Share on Mendeley
PDF(2298 KB)

91

Accesses

0

Citation

Detail

Sections
Recommended

/