Research Process of Soil Enzymes Effect on Carbon and Nitrogen Cycle in Agricultural Ecosystem

Bian Xuelian,Zhao Wenlei,Yue Zhonghui,Wang Huiyi,Jiao Hao and Sui Haixia

PDF(681 KB)
PDF(681 KB)
Chinese Agricultural Science Bulletin ›› 2016, Vol. 32 ›› Issue (4) : 171-178. DOI: 10.11924/j.issn.1000-6850.casb15090077

Research Process of Soil Enzymes Effect on Carbon and Nitrogen Cycle in Agricultural Ecosystem

  • Bian Xuelian, Zhao Wenlei, Yue Zhonghui, Wang Huiyi, Jiao Hao, Sui Haixia
Author information +
History +

Abstract

The paper aims to analyze research progresses of soil enzymes in China and abroad, and summarize the role of soil enzymes in carbon and nitrogen cycle in agricultural ecosystem, in order to provide reference for agricultural production. Soil enzyme is a kind of protein that could catalyze biochemical reactions. It plays an active role in catalyzing non-exclusive organic substances, organic substances and certain mineral compounds into a variety of nutrient substances and some useful elements that could promote the growth of vegetation, and has an active effect on the development of agricultural ecosystem. At present, soil enzymes have been used as important indicators of soil carbon and nitrogen cycle, and the process of nutrient cycle in soil could be reflected by the change of enzyme activities.

Key words

soil enzymes; carbon cycle; nitrogen cycle; research progress

Cite this article

Download Citations
Bian Xuelian,Zhao Wenlei,Yue Zhonghui,Wang Huiyi,Jiao Hao and Sui Haixia. Research Process of Soil Enzymes Effect on Carbon and Nitrogen Cycle in Agricultural Ecosystem. Chinese Agricultural Science Bulletin. 2016, 32(4): 171-178 https://doi.org/10.11924/j.issn.1000-6850.casb15090077

References

[1] 黄昌勇著.土壤学(第1版)[M].北京:科学出版社,2000:192-198.
[2] De Forest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J].Soil Biology and Biochemistry,2009,41:1180-1186.
[3] Ge G F, L i Z J, Fan F L, et al. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers[J].Plant Soil,2010,26:31-44.
[4] 周礼恺主编.土壤酶学(第1版)[M].北京:科学出版社,1987:116-206.
[5] Schimel J P, Weintraub M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model[J].Soil Biology and Biochemistry,2003,35:549-563.
[6] Moorhead D L, Sinsabaugh R L. A theoretical model of litter decay and microbial interaction[J].Ecological Monographs,2006,76:151-174.
[7] Dick W A, Tabatabai M A. Significance and potential uses of soil enzymes. In: Meeting FB Jr[J].Soil microbial ecology,1992:95-127.
[8] Bandick A K, Dick R P. Field management effects on soil enzyme activities[J].Soil Biology and Biochemistry,1999,31:1471-1479.
[9] Claus H. Laccases: structure, reactions, distribution[M].Micron,2004,35:93-96.
[10] Wolińska A, St?pniewska Z. Dehydrogenase activity in the soil environment. In: Canuto(ed) Dehydrogenases, in print edn[M].InTech, Rijeka,2012:183-209.
[11] Ebersberger D, Niklaus P A, Kandeler E. Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland[J].Soil Biology and Biochemistry,2003,35:965-972.
[12] Evans H J, Burris R H. Highlights in biological nitrogen fixation during the last 50 years. In: Stacey G, Burris R H, Evans H J, eds. Biological Nitrogen Fixation. New York[J].London: Chapman&Hall, Inc,1992,1.
[13] 潘瑞枳著.植物生理学(第7版)[M].北京:高等教育出版社,2012:54-58.
[14] KA Mimura Y, Hayano K. Properties of protease extracted from tea-field soil[J].Biology and Fertility of Soils,2000,30:351-355.
[15] 邱建军,秦小光.农业生态系统碳氮循环模拟模型研究[J].世界农业,2002:39-41.
[16] 周文婷,黄毅斌,王义祥,等.农业生态系统碳循环[J].草业科学,2013,30(11):1725-1731.
[17] 黄耀著.地气系统碳氮交换从实验到模拟[M].北京:气象出版社,2003:42.
[18] 曾涛,陈汉清,曾会才.木质素酶及其生产菌的筛选育种[J].基因组学与应用生物学,2009,28(03):578-582.
[19] Burke M, Cairney J W G. Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi[J].Mycorrhiza,2002,12:105-116.
[20] Toberman H, Evans C D, Freeman C, et al. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland[J].Soil Biology and Biochemistry,2008b,40:1519-1532.
[21] Wang P, Hu X K, Cook S. Effect of culture conditions on the production of ligninolytic enzyme system by white rot fungi Phanerochaete chrysosporium (A tcc20696) and separation of its lign in peroxidase[J].World Journal of Microbiology and Biotechnology,2008,24:2205-2212.
[22] 吴义祥,柯丽霞,吴青,等.豆渣对平菇和灵芝发酵产生木质素酶系的影响[J].生物学杂志,2011,28(4):47-53.
[23] Frank C, Joan M M. Effect of substrate nitrogen on lignin degradation by Pleurotus ostreatus[J].Archives of Microbiology,1985,142(1):61-65.
[24] Matocha C J, Haszler G R, Grove J H. Nitrogen fertilization suppresses soil phenol oxidase enzyme activity in no-tillage systems[J].Soil Science,2004,169:708-714.
[25] 刘秀清,章铁,孙晓莉.沿江丘陵区土壤酶活性与土壤肥力的关系[J].中国农学通报,2007,23(7):341-344.
[26] 高培基,许平著.资源环境微生物技术(第1版)[M].北京:化学工业出版社,2004:15-22.
[27] Sinsabaugh R L, Antibus R K, Linkins A E. Wood decomposition over a 1st-order watershe-mass-loss as a function of lignocellulase activity[J].Soil Biology and Biochemistry,1992,24:743-749.
[28] Zeglin L H, Stursova M, Sinsabaugh R L, et al. Microbial responses to nitrogen addition in three contrasting grassland ecosystems[J].Oecologia,2007,154:349-359.
[29] 孙锋,赵灿灿,李江涛,等.与碳氮循环相关的土壤酶活性对施用氮磷肥的响应[J].环境科学学报,2014,34(4):1016-1023.
[30] Henriksen T M, Breland T A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J].Soil Biology and Biochemistry,1999,31:1121-1134.
[31] Dhillion S S, Roy J, Abrams M. Assessing the impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem[J].Plant and Soil,1997,187(2):333-342.
[32] Moscatelli M C, Lagomarsino A, Deangelis P, et al. Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2[J].Applied Soil Ecology,2005,30:162-173.
[33] Li X F, Han S J, Guo Z L, et al. Changes in soil microbial biomass carbon and enzyme activities under elevated CO2 affect fine root decomposition processes in a Mongolian oak ecosystem[J].Soil Biology and Biochemistry,2010,42:1101-1107.
[34] 闫颖,袁星,樊宏娜.五种农药对土壤转化酶活性的影响[J].中国环境科学,2004,24(5):588-591.
[35] 金彩霞,刘军军,陈秋颖,等.兽药磺胺间甲氧嘧啶对土壤呼吸及酶活性的影响[J].农业环境科学学报,2010,29(2):314-318.
[36] 骆爱兰,余向阳.氟啶胺对土壤中蔗糖酶活性及呼吸作用的影响[J].中国生态农业学报,2011,19(4):902-906.
[37] 周世萍,段昌群,刘宏程.氯氰菊酯对土壤过氧化氢酶、淀粉酶活性的影响[J].环境科学导刊,2008,27(5):13-15.
[38] 杨春璐,孙铁珩,和文祥.汞和两种农药复合污染对土壤转化酶活性的影响[J].中国环境科学,2006,26(4):486-490.
[39] Li Z M, Jin B, Zhang H X, et al. Purification and characterization of three alkaline endopolygalacturonases from a newly isolated Bacillus gibsoni i[J].The Chinese Journal of Process Engineering,2008,8(4):768-773.
[40] 邓少虹,林明月,李伏生,等.施肥对碦斯特地区植草土壤碳库管理指数及酶活性的影响[J].草业学报,2014,23(4):262-268.
[41] 王梅,江丽华,刘兆辉,等.石油污染物对山东省三种类型土壤微生物种群及土壤酶活性的影响[J].土壤学报,2010,47(2):341-346.
[42] 卢振兰,刘锐敏,白莉萍,等.施用城市污泥对土壤生态系统影响的研究进展[J].生态环境学报,2012,21(1):172-179.
[43] 叶俊,王小丽,Gonzalez P P,等.有机和常规生产模式下菜田土壤酶活性差异研究[J].中国生态农业学报,2012,20(3):279-284.
[44] 吴旭东,张晓娟,谢应忠,等.不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征[J].草业学报,2013,22(1):245-251.
[45] Ajwa H A, Dell C J, Rice C W. Changes in enzyme activities and microbial biomass of tall grass prairie soil as related to burning and nitrogen fertilization[J].Soil Biology and Biochemistry,1999,32:169-177.
[46] Acosta-Martinez V, Reicher Z, Bischoff M et al. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality[J].Biology and Fertility of Soils,1999,29:55-61.
[47] 张俊丽,高明博,温晓霞,等.不同施氮措施对旱作玉米地土壤酶活性及CO2排放量的影响[J].生态学报,2012,32(19):6147-6154.
[48] 武雪萍,刘增俊,赵跃华,等.施用芝麻饼肥对植烟根际土壤酶活性和微生物碳、氮的影响[J].植物营养与肥料学报,2005,11(4):541-546.
[49] Filip Z, Karazawa S, Berthelin J. Characterization of effects of a long-term wastewater irrigation on soil quality by microbiological and biochemical parameters[J].journal of plant nutrition and soil science,1999,162:409-413.
[50] 闵航著.微生物学[M].北京:科学出版社, 2009:152-160.
[51] Keeling A A, Cook J A, Wilcox A. Effects of carbohydrate application on diazotroph populations and nitrogen availability in grass swards established in garden waste compost[J].Bioresource Technology,1998,66(2):89-97.
[52] Limmer C, Drake H L. Non-symbiotic N2 -fixation in acidic and pH-neutral forest soil: Aerobic and anaerobic differentials[J].Soil Biology and Biochemistry,1996,28(2):177-183.
[53] Montaez A, Abreu C, Gill P R, et al. Biological nitrogen fixation in maize by 15N isotope-dilution and identification of associated culturable diazotrophs[J].Biology and Fertility of Soils,2009,45(3):253-263.
[54] 孙贵荒,刘哓丽,董丽杰.高产大豆干物质积累与产量关系的研究[J].大豆科学,2002,21(3):199-203.
[55] Crafts-Brandner S J, Beloe F E, Harper J E, et al. Effect of nodulation on assimilate remobilization in soybean[J].Plant Physiol,1984,76:452.
[56] 白红英,韩建刚,赵一萍.不同土层土壤理化生性状与反硝化酶活性N2O排放通量的相关性研究[J].农业环境保护,2002,21(3):193-196.
[57] 黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生态生理机制[J].植物营养与肥料学报,2001,7(3):293-297.
[58] 王泽宪,张树芹.不同蛋白质含量小麦品种叶片NRA与氮素积累关系的研究[J].西北植物学报,1999,19(3):315-320.
[59] King C A, Purcell L C, Vories E D. Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications[J].Agronomy Journal,2001,93:179-186.
[60] Reddy K N, Hoagland R E, Zablotowicz R M. Effect of glyphosate on growth, chlorophyll, and nodulation in glyphosate-resistant and susceptible soybean (Glycine max) varieties[J].Journal of New Seeds,2000,2(03):37-52.
[61] Singh P, Prakash S, Grover H L. Effect of 2,4-D on the nitrate assimilation process in cowpea shoot[J].Pesticide Biochemistry and Physiology,1998,61:15-20.
[62] Zabalza A, Gaston S, Ribas-Carbó M, et al. Nitrogen assimilation studies using 15N in soybean plants treated with imazethapyr, an inhibitor of branched-chain amino acid biosynthesis[J].Journal of Agricultural and Food Chemistry,2006,54:8818-8823.
[63] Bellaloui N, Reddy K N, Zablotowicz R M, et al. Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean[J].Journal of Agricultural and Food Chemistry,2006,54:3357-3364.
[64] 薛冬,姚槐应,何振立,等.红壤酶活性与肥力的关系[J].应用生态学报,2005,16(8):1455-1458.
[65] 杜天庆,苗果园.豆科牧草根际土壤脲酶活性的研究[J].中国生态农业学报,2007,15(1):25-27.
[66] Zornoza R, Guerrero C, Mataix-Solera J, et al. Assessing air- drying and rewetting pre- treatment effect on some soil enzyme activities under Mediterranean conditions[J].Soil Biology and Biochemistry,2006,38:2125-2134.
[67] 熊明彪,田应兵,雷孝章,等.小麦生长期内土壤养分与土壤酶活性变化及其相关性研究[J].水土保持学报,2003,4:27-30.
[68] 刘淑英.不同施肥对西北半干旱区土壤脲酶和土壤氮素的影响及其相关性[J].水土保持学报,2010,24(1):219-223.
[69] 沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶变化及其相关性研究[J].应用生态学报,1999,10(4):88-91.
[70] 钱海燕,杨滨娟,黄国勤,等.秸秆还田配施化肥及微生物菌剂对水田土壤酶活性和微生物数量的影响[J].生态环境学报,2012,21(3):440-445.
[71] 魏猛,娄燕宏,栾森年,等.施肥对文冠果养分吸收及土壤酶活性的影响[J].北方园艺,2010,(10):32-35.
[72] 裴海昆.不同施肥量对天然草地土壤酶活性的影响[J].青海畜牧兽医杂志,2001,31:15-16.
[73] 安韶山,黄懿梅,郑粉莉.黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系[J].草地学报,2005,13(3):233-237.
[74] 邱业先.红壤稻田脲酶研究[D].长沙:湖南农业大学,2000.
[75] 谭启玲,胡承孝,周后建,等.城市污泥中的重金属形态及其对潮土酶活性的影响[J].华中农业大学学报,2002,21(1):36-39.
[76] 关松荫著.土壤酶及其研究法[M].北京:农业出版社,1983:291-297.
[77] Mishra S, Di H J, Ameron K C, et al. Gross nitrogen mineralisationrates in pastural soils and their relationships with organic nitrogen fractions,microbial biomass and protease activity under glasshouseconditions[J].Biology and Fertility of Soils,2005,42:45-53.
[78] 罗虹,刘鹏,宋小敏.重金属镉、铜、镍复合污染对土壤酶活性的影响[J].水土保持学报,2006,20(2):94-96,121.
[79] Acosta-Martinez V, Tabatabai M A. Arylamidase activity of soils[J].Soil Science Society of American Journal,2000,64:215-221.
[80] Acosta-Martinez V, Tabatabai M A. Arylamidase activity in soils: effect of trace elements and relationships to soil properties and activities of amidohydrolases[J].Soil Biology and Biochemistry,2001,33:17-23.
[81] 张威,张明,张旭东,等.土壤蛋白酶和芳香氨基酶的研究进展[J].土壤通报,2008,39(6):1468-1473.
[82] Alef K, Nannipieri P, Trazar-Cepeda C. Phosphatase activity. In: Alef K, Nannipieri P(.s)Methods in applied soil microbiology and biochemistry[M].Academic, San Diego, CA,1995:335-344.
Share on Mendeley
PDF(681 KB)

Collection(s)

Reviews

Agroecology

413

Accesses

0

Citation

Detail

Sections
Recommended

/