Application of Modern Biotechnology in Flax Breeding
Author information+
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
Collapse
History+
Received
Revised
Accepted
Published
2015-04-01
2015-07-10
2015-05-22
2015-08-20
Issue Date
2015-08-20
Abstract
In order to provide new ideas for flax germplasm innovation and promote further development of flax breeding, current research status of flax breeding was described briefly, and the application of gene engineering, plant tissue culture and molecular marker in flax breeding was summarized in the paper. We proposed that the emphasis of flax breeding was to strengthen the study on distant hybridization and improve the efficiency and effect of hybridization breeding by using marker- assisted selection. Establishing and perfecting an effective technical system of anther culture were the keys to establish a practical breeding technical system and breed elite new cultivars. Furthermore, establishing an efficient genetic transformation breeding technical system was an important direction of flax breeding.
Application of Modern Biotechnology in Flax Breeding. Chinese Agricultural Science Bulletin. 2015, 31(23): 58-63 https://doi.org/10.11924/j.issn.1000-6850.casb15040011
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Basiran N, Armitage P, Scott R J, et al. Genetic transformation of flax(Linum usitatissimum) by agrobacterium tumefaciens: Regeneration of transformed shoots via a callus phase[J]. Plant Cell Reports, 1987, 6:396-399. [2] Jordan M, McHughen A. Glyphosate tolerant flax plants from Agrobacterium mediated gene transfer[J]. Plant Cell Reports, 1988,7(4) :281-284. [3] McHughen A. CDC Triffid transgenic flax[J].Canadian Journal of plant science,1997, 77(4):641-643. [4] Yemets AI, Bayer OA, Radchuk VV, et al. Agrobacterium-Mediated transformation of flax with a mutant tubulin gene responsible for resistance to dinitroaniline herbicides[J]. Russian Journal Genetics, 2009, 45(10): 1215- 1222. [5] 李闻娟,张建平,陈芳,等. Bar基因的亚麻花粉管通道法转化[J].中国农学通报,2013,29(12):96-100. [6] 贾婉琪. 亚麻高效再生体系优化及抗除草剂bar基因的遗传转化研究[D].长沙:中国农业科学院,2011:30-39. [7] Wróbel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, et al. Expression of β-1,3-glucanase in flax causes increased resistance to fungi[J]. Physiological and Molecular Plant Pathology, 2004, 65(5): 245-256. [8] 苑志辉.兔防御素NP-Ⅰ基因在亚麻抗枯萎病方面的研究[D].北京:中国农业大学,2005:5-15. [9] Tadeusz Czuj, Magdalena Zuk, Michal Starzycki, et al. Engineering increases in sulfur amino acid contents in flax by overexpressing the yeast Met25 gene[J].Plant Science, 2009, 177:584–592. [10] 王毓美,徐云远,贾敬芬.亚麻遗传转化体系的建立及几丁质酶基因导入的研究[J].西北植物学报,2000,20(3):346-351. [11] Lorenc-Kuku?a K,Wróbel-Kwiatkowska M,Starzycki M,et al. Engineering flax with increased flavonoid content and thus Fusarium resistance[J]. Physiological and Molecular Plant Pathology, 2007 , (70): 38–48. [12] Mierziak J, Wojtasik W, Kostyn K, et al. Crossbreeding of transgenic flax plants overproducing flavonoids and glucosyltransferase results in progeny with improved antifungal and antioxidative properties[J]. Molecular Breeding, 2014, 34(4):1917–1932. [13] 王秀珍. 农杆菌介导的月见草△6-脂肪酸脱氢酶基因转化亚麻的研究[D].呼和浩特:内蒙古大学,2010:45-49. [14] Abbadi A, Domergue F, Bauer J, et al. Biosynthesis of very-long chain polyunsaturated fatty acids in transgenic oilseeds :constraints on their accumulation[J]. Plant Cell, 2004, 16(10) :2734-2748. [15] 苑志辉,孙洪涛.亚麻体细胞无性系的建立及其植株再生[J].中国麻作,1997,(1):17一18. [16] A. McHughen, M. Swartz. A Tissue-Culture Derived Salt-Tolerant Line of Flax (Linum usitatissimum)[J]. Journal of Plant Physiology, 1984, 117(2): 109–117. [17] Mark C. Jordan,SAlan McHughen. Selection for Chlorsulfuron Resistance in Flax (Linum usitatissimum) Cell Cultures[J]. Journal of Plant Physiology, 1987,131(3–4): 333–338. [18] Nichterlein K, Umbach H, Friedt W.Genotypic and exogenous factors affecting shoot regeneration from anther callus of linseed (Linum usitatissimum L.)[J]. Euphytica, 1991, 58(2): 157-164. [19] I. Rutkowska-Krause,G. Mankowska,M. Lukaszewicz et al. Regeneration of flax (Linum usitatissimum L.) plants from anther culture and somatic tissue with increased resistance to Fusarium oxysporum[J]. Plant Cell Rep,2003, (22):110-116. [20] W. Friedt,C. Bickert and H. Schaub. In vitro breeding of high-linolenic, doubled-haploid lines of linseed (Linum usitatissimum L.) via androgenesis[J]. Plant Breeding, 1995, 114(4):322- 326. [21] 宋淑敏,田玉杰,姬妍茹,等.γ射线辐射亚麻花药的研究初报[J].中国麻业,2004,26(4):162-163. [22] 康庆华,许修宏,李柱钢,等. 亚麻单倍体抗逆基因的转化[J].中国麻业,2006,28(6):291-296. [23] T.Y. Bo, J.J.Ma, J.X. Chen, et al. Identification of specific molecular markers linked to the rust resistance gene M4 in flax[J]. Australasian Plant Pathology, 2008, 37: 417-420. [24] 薄天岳,叶华智,李晓兵,等.亚麻抗枯萎病基因FuJ7(t)的分子标记[J].中国农业科学,2003,36(3):287-291. [25] G. Hausner, K.Y. Rashid, E.O. Kenaschuk, et al. The identification of a cleaved amplified polymorphic sequence (CAPS) marker for the flax rust resistance gene M3 [J]. Canadian Journal of Plant Pathology, 1999, 21: 187-192 . [26] G. Hausner, K.Y. Rashid, E.O. Kenaschuk, et al. The development of co-dominant PCR/RFLP based markers for the flax rust resistance alleles at the L locus [J]. Genome, 1999, 42: l-8. [27] T.J.Oh, M.Gorman, C.A.Cullis.RFLP and RAPD mapping in flax (Linum usitatissimum) [J]. Theor Appl Genet, 2000,(101):590–593. [28] W. Spielmeyer, A.G.Green, D. Bittisnich . Identification of quantitative trait loci contributing to Fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum) [J]. Theor Appl Genet (1998) 97: 633-641. [29] Sylvie Cloutier,Raja Ragupathy,Zhixia Niu, et al. SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits[J]. Mol Breeding, 2011, (28):437–451.