To select adaptable plant to grow in water- level- fluctuating zone of Three Gorges reservoir, the influence of submergence on growth and physiology of Iris pseudacorus was investigated. In laboratory condition, after the seedlings of Iris pseudacorus were submerged for 0, 10, 20, 30 and 40 days, the plant height, number of leaves, leaf area, number of roots and roots volume and other morphological indictors and the chlorophyll content, MDA, soluble sugar and starch of leaves were analyzed. The results indicated that after submerging for 40 days, the plant height, number of leaves, leaf area, number of roots and roots volume of submerged plant were respectively 11.53 cm, 4.00, 9.94 cm2, 5.33 and 0.18 cm3, which were lower than that of control plant significantly; the content of chlorophyll a, chlorophyll b and chlorophyll a+b significantly decreased to 0.26 mg/g, 0.10 mg/g and 0.35 mg/g, respectively; chlorophyll a/b, the content of MDA and soluble sugar significantly increased to 2.76, 0.0245 μmol/L and 95.11 mg/g, respectively; after submerging for 20 days, the starch content increased to the maximum (37.67 mg/g), then decreased to 34.56 mg/g after 40 days. In submergence condition, plant growth was inhibited, the chlorophyll content was degraded and membrane lipid peroxidation was intensified. To adapt to the energy demand under water, both the chlorophyll a/b ratio and the content of direct supply energy materials of the plant increased.
Key words
Iris pseudacorus seedlings; submergence; morphological characteristic; physiological features
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 申建红, 曾波, 类淑桐, 等. 三峡水库消落区4种一年生植物种子的水淹耐受性及水淹对其种子萌发的影响. 植物生态学报, 2011, 36(3): 237-246.
[2] 梁福庆. 长江三峡水库消落区保护利用研究. 湿地科学, 2008, 6(2): 326-329.
[3] 朱爱民, 李嗣新, 胡俊, 等. 三峡水库支流拟多甲藻水华的形成机制. 生态学报, 2014, 34(11): 3071-3080.
[4] 彭成荣, 陈磊, 毕永红, 等. 三峡水库洪水调度对香溪河藻类群落结构的影响. 中国环境科学, 2014, 34(7): 1863-1871.
[5] 黎莉莉, 张晟, 刘景红, 等. 三峡库区消落区土壤重金属潜在生态危害评价[J]. 西南农业大学学报(自然科学版). 2005, 27(4): 470-473.
[6] 印士勇, 娄保峰, 刘辉, 等. 三峡工程蓄水运用期库区干流水质分析[J]. 长江流域资源与环境, 2011, 20 ( 3) : 305-310.
[7] 王健康, 高博, 周怀东, 等. 三峡库区蓄水运用期表层沉积物重金属污染及其潜在生态风险评价. 环境科学, 2012, 33(5): 1693-1699.
[8] 杜立刚, 方芳, 郭劲松, 等. 三峡库区消落带草本植物碳氮磷释放及影响因素. 环境科学研究, 2014, 27(9): 1024-1031.
[9] 潘杰, 来守军, 黄怡民, 等. 铅胁迫对2种三峡库区消落带适生植物生长及铅积累的影响. 江苏农业科学, 2014, 42(6): 332-335.
[10] 康志, 杨丹菁, 靖元孝. 水库库岸消涨带植被恢复研究. 中国农村水利水电, 2007, (10): 22-25.
[11] 田如男, 孙欣欣, 魏勇, 等. 水生花卉对铜绿微囊藻、斜生栅藻和小球藻生长的影响. 生态学杂志, 2011, 30(12): 2732-2738.
[12] 蒋跃平, 葛滢, 岳春雷, 等. 人工湿地植物对观赏水中氮磷去除的贡献. 生态学报, 2004, 24(8): 1720-1725.
[13] 孙延东, 原海燕, 黄苏珍. Cd-Cu复合胁迫对黄菖蒲叶片及根系中Cd和Cu的积累及其迁移率的影响. 植物资源与环境学报, 2009, 18(1): 22-27.
[14] 原海燕, 黄苏珍, 郭智. 4种鸢尾属植物对铅锌矿区土壤中重金属的富集特征和修复潜力. 生态环境学报, 2010, 19(7): 1918-1922.
[15] 柏祥, 陈开宁, 黄蔚, 等. 黄菖蒲和美人蕉对水深梯度的响应差异. 生态学杂志, 2011, 30(3): 464-470.
[16] 韩玉林, 仇硕, 夏采意, 等. 黄菖蒲适生环境筛选. 植物资源与环境学报, 2006, 15(2): 38-41.
[17] 蔺海明, 纪瑛, 王斌, 等. 生荒地氮磷配施对苦参苗生长和苦参总碱含量的影响.草业学报, 2010, 19(3):102-109.
[18] 肖强, 叶文景, 朱珠, 等. 利用数码相机和Photoshop 软件非破坏性测定叶面积的简便方法. 生态学杂志, 2005, 24(6): 711-714.
[19] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 第4版. 北京:高等教育出版社, 2009.
[20] 张艳红, 曾波, 付天飞, 等. 长期水淹对秋华柳(Salix variegata Franch.)根部非结构性碳水化合物含量的影响. 西南师范大学学报(自然科学版) , 2006, 31(3):153-156.
[21] 秦洪文, 刘云峰, 王德炉, 等. 水淹对水芹生长的影响. 山地农业生物学报. 2009, 28 (3): 193-197.
[22] 秦洪文, 刘正学, 钟彦, 等. 三峡库区岸生植物枸杞对短期水淹的恢复响应. 福建林学院学报, 2013,33(1): 43-47.
[23] 秦洪文, 刘正学, 钟彦, 等. 水淹对濒危植物输花水柏枝生长及恢复生长的影响. 中国农学通报, 2014, 30(23): 284-288.
[24] 钟彦, 刘正学, 秦洪文, 等. 冬季淹水对柳树生长及恢复生长的影响. 南方农业学报, 2013, 44(2): 275-279.
[25] Tabot PT, Adams JB. Early responses ofSBassia diffusaS(Thunb.) Kuntze to submergence for different salinity treatments. South African Journal of Botany, 2013, 84: 19-29.
[26] 刘云峰, 秦洪文, 石雷, 张会金, 刘立安, 姜闯道, 王德炉. 水淹对水芹叶片结构和光系统Ⅱ光抑制的影响. 植物学报, 2010, 45(4): 426-434.
[27] Panda D, Sharma SG, Sarkar RK. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquatic Botany, 2008, 88:127-133.
[28] Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica, 2008, 46 (1): 21-27.
[29] Fernández MD. Changes in photosynthesis and fluorescence in response to flooding in emerged and submerged leaves of Pouteria orinocoensis [J]. Photosynthetica, 2006, 44: 32-38.
[30] Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany, 2003, 91:179-194.
[31] 谷昕, 李志强, 姜闯道, 等. 水淹导致皇冠草光合机构发生变化并加剧其出水后光抑制. 生态学报, 2009, 29(12): 6466-6474.
[32] 赖廷和, 何斌源. 木榄幼苗对淹水胁迫的生长和生理反应. 生态学杂志. 2007, 26(5): 650-656.
[33] Vervuren PJA, Beurskens SMJH, Blom CWPM. Light acclimation, CO2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species. Plant Cell and Environment, 1999, 22(8): 959-968.
[34] He JB, B?gemann GM, van de Steeg HM, Rijnders JG, Voesenek LA, Blom CW. Survival tactics of Ranunculus species in river floodplains. Oecologia, 1999, 118(1): 1-8.
[35] 施美芬, 曾波, 申建红, 等. 植物水淹适应与碳水化合物的相关性. 植物生态学报, 2010, 34 (7): 855–866.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}