ptsG Knockout: The Impact on CCR Effect of Klebsiella pneumoniae and Its Fermentation Production of 2,3-BD

MAOLiangyang, LINa, GEJingping

PDF(1995 KB)
PDF(1995 KB)
Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (3) : 95-102. DOI: 10.11924/j.issn.1000-6850.2023-0075

ptsG Knockout: The Impact on CCR Effect of Klebsiella pneumoniae and Its Fermentation Production of 2,3-BD

Author information +
History +

Abstract

The objective is to address the issue of Carbon Catabolite Repression (CCR) in Klebsiella pneumoniae during mixed carbon source fermentation for 2,3-butanediol (2,3-BD) production, which leads to a decrease in production efficiency. In this study, a Cm resistance gene was used as a marker, and the ptsG gene deletion strain of K. pneumoniae HD79-N was successfully constructed using the λRed homologous recombination technique. Furthermore, the fermentation results using a mixed carbon source of glucose and xylose (glucose:xylose=2:1) demonstrated that the K. pneumoniae HD79-N strain, with the ptsG gene deletion, significantly alleviated CCR, enabling simultaneous utilization of glucose and xylose for 2,3-BD production with a final yield of 9.81±0.38 g/L. Moreover, the xylose utilization rate of K. pneumoniae HD79-N strain [0.23±0.01 g/(L·h)] was also increased by 57.82% compared to that of K. pneumoniae HD79 strain [0.15±0.00 g/(L·h)]. The findings of this study provide technical insights into alleviating the CCR effect caused by the ptsG gene in K. pneumoniae strains and enhancing the production of 2,3-BD.

Key words

2,3-butanediol / gene knockout / ptsG gene / homologous recombination / Klebsiella pneumonia

Cite this article

Download Citations
MAO Liangyang , LI Na , GE Jingping. ptsG Knockout: The Impact on CCR Effect of Klebsiella pneumoniae and Its Fermentation Production of 2,3-BD. Chinese Agricultural Science Bulletin. 2024, 40(3): 95-102 https://doi.org/10.11924/j.issn.1000-6850.2023-0075

0 引言

2,3-丁二醇(2,3-butanediol,2,3-BD)是一种重要的工业化学品,具有许多潜在的应用价值[1]。在第二次世界大战期间,大规模生产的2,3-丁二醇(2,3-BD)被广泛用于化学和燃料工业。例如,2,3-BD能通过化学催化脱水转化为1,3-丁二烯,用于合成橡胶[2];此外,由于其冰点低于-30℃,还可用作防冻剂以及合成聚合物的单体材料[3-4]。同时,2,3-BD也可作为新型链引发剂,用于制造以聚氨酯为中间体的多元醇和聚合异氰酸酯[5]。随着社会经济的不断发展,2,3-BD逐步在多个领域备受青睐。它不仅在化妆品制造中被广泛应用,充当防腐剂、保湿剂和润肤剂[6],而且在农业领域中,经2,3-BD处理后,植物的干旱耐受性显著提高[7]。另外,2,3-BD还展现了增强机体先天免疫力的能力,并通过激活自然杀伤细胞活性来清除受损的肝细胞[8-9]。作为一种天然物质,2,3-BD常存在于葡萄酒、啤酒、发酵食品、土壤和植物等中,并且基于其作为免疫增强剂的功效,它可能被用作食品添加剂或健康补充剂[10]
水解木质纤维素产生的混合碳源,主要由葡萄糖和木糖组成,具有缓解当前化石燃料稀缺问题的潜力,同时满足对新型绿色、经济高效生产2,3-丁二醇的需求[11]。然而,由于碳分解代谢抑制(Carbon catabolite repression,CCR)存在于微生物中,导致2,3-BD生产菌会优先利用葡萄糖,直到葡萄糖耗尽后,才转向其他碳源[12]。这种现象不仅降低了2,3-BD生产率,而且会制约最终产品的产量。因此,如何解决CCR存在的代谢抑制成为提高菌株生产效率的关键。
目前,对解除菌株CCR、构建葡萄糖和木糖同步利用菌株的研究较多,解决策略主要有两种:一是通过发酵工艺改造,二是通过基因工程手段。MA等[13]利用玉米秸秆水解液进行细胞循环连续发酵生产2,3-BD,通过细胞再利用,成功消除了CCR效应。然而,尽管该方式取得了一定的进展,但所获得的2,3-BD产量较低。因此,仍需要通过基因工程手段和优化工艺条件来提高2,3-BD的产量。根据菌株的CCR机制发现,磷酸转移酶系统(PTS)的葡萄糖转运酶基因(ptsG)在其中起着核心作用,它能够编码葡萄糖特异性转运蛋白(酶EIIBC)将葡萄糖转运进细胞,为细胞提供所需的碳源。研究表明,EIIBCGlc(ptsG)缺失的大肠杆菌能够激活半乳糖透性酶来运输葡萄糖,虽然葡萄糖的利用受到一定影响,但菌株能够同步代谢葡萄糖和木糖,生长周期比对照缩短16%[14]。KIM等[15]利用相同的方法消除了Enterobacter. aerogenes中的CCR效应,在经过72 h的发酵后,工程菌株利用甘蔗渣水解液作为碳源,木糖利用率和2,3-丁二醇产量均相对提高。
肺炎克雷伯氏菌(Klebsiella pneumoniae)具有广泛的底物利用范围,大多数单糖、菊芋粉以及玉米芯等都可以作为其良好的碳源,其不仅对底物的利用率高,而且2,3-BD的产量也较高[16]。其中,K. pneumoniae HD79是实验室保藏的一株2,3-BD产生菌,课题组先前以K. pneumoniae HD79基因组为模板,扩增乙酰乳酸脱羧酶基因(budA)、乙酰乳酸合成酶基因(budB)、2,3-丁二醇脱氢酶基因(budC)片段,构建7株不同过表达组合的工程菌株,并对工程菌株的产醇性能进行了检测。结果发现,K. pneumoniae HD79-4(过表达budA、budB)发酵效果最好,2,3-丁二醇产量可达33.357 g/L。可见,K. pneumoniae HD79是一株具有潜在高产2,3-BD的优良候选菌株。
为了提高K. pneumoniae HD79对木质纤维素水解碳源的全糖利用,实现对可再生资源的有效循环。本研究集中对K. pneumoniae HD79菌株进行改造,通过λRed同源重组技术构建ptsG基因敲除菌株K. pneumoniae HD79-N并检测其解除CCR的效果,为进一步提升K. pneumoniae HD79发酵产生2,3-BD奠定了菌种基础。

1 材料与方法

1.1 材料

1.1.1 菌株和质粒

本试验用的菌株和质粒见表1表2
表1 试验菌株
序号 名称 菌株用途 菌株特点 菌株来源
1 K. pneumoniae HD79 出发菌株 野生型 黑龙江大学微生物重点实验室保存
2 E. coli DH5α 克隆和转化 ΔlacU169, Rˉ, Mˉ, Ampr
3 K. pneumoniae HD79-N 用于本探究 Cmr, ΔptsG, Cmr 自行构建
表2 试验质粒
序号 名称 质粒特点 质粒用途 质粒来源
1 pMD18-T Ampr, lacZ, 2692 bp 克隆载体 大连宝生物有限公司
2 pKD46 Ampr, Exo, Beta, Gam, 6329 bp 同源重组 北京鼎国生物科技有限公司
3 pLysS Cmr, T7 lysozyme, 4886 bp 克隆cm基因

1.1.2 引物序列

依据NCBI以及EMBL-EBI数据库中K. pneumoniaeptsGxylFGHxylABxylE基因序列信息,以及克隆载体pMD18-T序列信息,利用Snapgene和Primer 5两种软件设计引物,交由擎科生物科技有限公司与上海生工科技有限公司进行引物合成,各引物序列及用途见表3
表3 引物序列
引物名称 引物序列(5’-3’) 用途
ptsG1-F CCGTACTGCCTATCGCAGGTATC 克隆ptsG1上游片段594 bp
ptsG1-R gacaccaggCGTTCCGATGTGATGCAGACC
ptsG2-F tggtgctacgcGCGATTTGGCACTCTGCTAAAC 克隆ptsG2下游片段579 bp
ptsG2-R GTACGCCAGAACCTGCCACTAC
cmr-F GATCATCTGAACGCGGCACGTAAGAGGTTCC 克隆cmr序列888 bp
cmr-R CACGCCATTCCCCGCTTATTATCACTTATTCA
pKD46-F CCCAGCCCTGTGTATAACTCAC 验证转化结果
1387 bp
pKD46-R CAACTCGGTCGCCGCATACA
ptsG-F AGCCAAAGCGAGTAAAGTTCAC 验证重组结果2507 bp
ptsG-R GCGGACTGTTTTCAGGGTTAT
M13R GTAAAACGACGGCCAGT 验证重组质粒
M13F TGTAAAACGACGGCCAGT
ptsG-up CGTGATCCTCTCCTTCATTTG qRT-PCR检测扩增ptsG
ptsG-down tAAGCCGCCAGACAGTTTG
xylA-up CGGGCGAAGTTATTGCTG qRT-PCR检测扩增xylA
xylA-down GGCTTTCCGTCATTACAACC
xylB-up CCGCCGATAAGCGTGAT qRT-PCR检测扩增xylB
xylB-down GGTGTGGTTCCTGCCCTAT
xylE-up TTCCGCACCGAACATCC qRT-PCR检测扩增xylE
xylE-down GCCCGCTTTACATTGCC
xylF-up ACCTTCCTGCTTGGCTTCT qRT-PCR检测扩增xylF
xylF-down aCTGGCAGAAAGACCGTGAT
xylG-up GCAGTTCGGATGAAATGACA qRT-PCR检测扩增xylG
xylG-down tCCAGCAAAAGGCGATTC
xylH-up ACCCACCATCCGTTCCA qRT-PCR检测扩增xylH
xylH-down GCCATCGTCGTCATTATGC
16S rDNA-up TGTGTAGCCCTGGTCGTAAG qRT-PCR检测扩增内参基因
16S rDNA-down CGGACATCCACAGAACTTAGC

1.1.3 培养基

LB (Luria-Bertani)液体及固体培养基按照常规方法配置[17],用于细菌的培养、富集及纯化。K. pneumoniae种子培养基配方参见文献[17],该培养基用于2.3-BD产生菌培养;K. pneumoniae发酵培养基配方参考课题组之前的结果并稍加改动[18]:(NH4)2SO4 6.6 g/L,K2HPO4·3H2O 8.7 g/L,KH2PO4 6.8 g/L,MgSO4 0.25 g/L,酵母提取物5 g/L,FeSO4·7H2O 0.05 g/L,ZnSO4·7H2O 0.001 g/L,MnSO4·H2O 0.001 g/L,CaCl2·2H2O 0.001 g/L。用KOH调节溶液的pH 7.0,121℃高压灭菌15 min。为了模拟木质纤维素水解液中糖类物质组成和比例,加入经108℃高压灭菌20 min的80 g/L葡萄糖与木糖(2:1,w/w)混合糖粉末作为碳源用于2,3-BD产生菌发酵试验。

1.2 方法

1.2.1 K. pneumoniae HD79基因组DNA的提取

挑取K. pneumoniae HD79单菌落接种于LB液体培养基中,30℃,150 r/min振荡培养至对数生长期,利用基因组提取试剂盒Bacteria gDNA Mini Kit(天根生化科技(北京)有限公司,编号W6511)提取基因组DNA。

1.2.2 pLysS质粒的提取

将含有pLysS质粒的E.coli DH5α菌株接种于LB液体培养基(含35 μg/mL Cm)中,37℃,150 r/min振荡培养至对数生长期,使用质粒提取试剂盒Plasmid Mini Kit(天根生化科技(北京)有限公司,编号W5001)提取pLysS质粒DNA。

1.2.3 同源重组片段ptsG1-cmr-ptsG2的构建

K. pneumoniae HD79基因组DNA、质粒pLysS为模板,利用引物ptsG1-F/R、ptsG2-F/R和cmr-F/R分别进行PCR扩增,最后在融合PCR技术下得到同源重组片段ptsG1-cmr-ptsG2。使用高保真酶FastPfu DNA Polymerase在PCR反应程序:98℃预变性2 min;98℃变性10 s,60℃退火15 s,72℃延伸3 min,进行ptsG1ptsG2cmr三个片段的互补延伸,以形成全长的融合PCR产物。10个循环反应后,直接向上述体系中加入引物ptsG1-F和ptsG2-R各1 μL继续进行35个循环的扩增反应,最后在T4连接酶的作用下即可得到同源重组片段ptsG1-cmr-ptsG2,构建流程如图1
图1 同源重组片段ptsG1-cmr-ptsG2构建策略

Full size|PPT slide

1.2.4 重组载体pT-ptsG1-cmr-ptsG2的构建及验证

将同源重组片段ptsG1-cmr-ptsG2胶回收产物加“A”连接pMD18-T线性载体,金属浴16℃,过夜连接后用热激法将连接产物转化至E. coli DH5α感受态细胞中。将转化后的复苏菌液涂布于含有35 μg/mL Cm的LB平板,37℃,过夜培养。用接种环随机挑取单菌落,溶于ddH2O中,利用M13F和M13R引物进行菌落PCR验证。PCR反应程序:98℃预变性2 min;98℃变性10 s,60℃退火15 s,72℃延伸3 min,循环35次。将验证正确重组质粒标记为“pT-ptsG1-cmr-ptsG2”。E.coli DH5α感受态细胞的制备和热激法参考此文献[19]

1.2.5 pKD46质粒的电转化及验证

将含有λRed同源重组辅助质粒pKD46的E.coli DH5α菌株接种于LB液体培养基(含100 μg/mL Amp)中,30℃,150 r/min振荡培养至对数生长期,提取pKD46质粒DNA后通过电转化的方法转至K. pneumoniae HD79感受态细胞中。利用pKD46-F和pKD46-R引物进行菌落PCR验证。将验证正确的菌株标记为“K. pneumoniae HD79 (pKD46)”。K. pneumoniae HD79感受态细胞的制备和电转化法参照此文献[20]

1.2.6 同源重组片段ptsG1-cmr-ptsG2的电转化及基因敲除菌株的验证

pT-ptsG1-cmr-ptsG2质粒为模板,利用引物ptsG1-F和ptsG2-R进行PCR扩增后通过电转化的方法转至K. pneumoniae HD79 (pKD46)感受态细胞中。将转化后的复苏菌液6000 r/min离心3 min,收集菌体。用150 µL新鲜LB液体培养基重悬菌液,之后涂布于含有1 mg/mL Cm的LB平板,30℃过夜培养,利用ptsG-F和ptsG-R引物进行菌落PCR验证,将验证正确的菌株命名为“K. pneumoniae HD79-N”,构建策略如图2
图2 同源重组基因敲除构建策略

Full size|PPT slide

1.2.7 重组菌株发酵性能的检测

K. pneumoniae HD79、K. pneumoniae HD79-N株菌分别接种于LB培养基中,30℃,150 r/min,过夜培养。以5%的接种量接种到种子培养基中,制备种子液。之后将种子液以5%的接种量转接至K. pneumoniae发酵培养基中,30℃,150 r/min发酵84 h,装液量为100 mL/250 mL,底物糖(葡萄糖:木糖=2:1)浓度为80 g/L。每12 h取样,稀释10倍后,利用紫外分光光度计测OD600,稀释100倍后利用高效液相色谱检测糖剩余量以及2,3-BD产量。

1.2.8 qRT-PCR检测mRNA表达量

分别将K. pneumoniae HD79、K. pneumoniae HD79-N菌株的菌液接种到种子培养基中,制备种子液。之后以5%的接种量转接至K. pneumoniae发酵培养基中,30℃,150 r/min培养至指数生长期,取2 mL发酵液于无菌的离心管中,8000 r/min,4℃离心2 min,收集菌体。利用TransZol Up试剂盒提取RNA。利用反转录试剂盒对16S rDNA、ptsG基因和木糖转运蛋白(XylFGH和XylE)以及木糖降解酶(XylA和XylB)编码基因的cDNA进行提取,利用设计好的各基因的荧光定量PCR引物进行RT-PCR。反应程序:95℃预变性5 min;95℃变性10 s,55℃退火20 s,72℃延伸30 min,循环40次。根据各样品的CT值,采用相对定量2-△△CT法进行分析,以管家基因16S rDNA作为内参基因。即可得出各样品种各基因的mRNA表达效果

1.2.9 统计分析方法

本试验的数据由平均值及其标准差显示,采用Origin 2021软件和JMP 13软件进行数据统计分析和图表分析。

2 结果与分析

2.1 同源重组片段ptsG1-cmr-ptsG2的构建

用试剂盒提取K. pneumoniae HD79的基因组DNA,结果显示(图3A)在15000 bp上方有一条清晰的条带,证明基因组DNA提取成功,接着用引物ptsG1-F和ptsG1-R进行PCR扩增后发现(图3B),1与2泳道在750 bp和500 bp之间分别出现清晰的条带,证明PCR扩增ptsG1ptsG2成功;以pLysS质粒DNA为模板,利用引物cmr-F和cmr-R进行PCR扩增后发现(图3C),在1000 bp和750 bp之间出现清晰的条带,与试验设计的cmr (888 bp)大小相同,证明PCR扩增cmr成功。最后利用ptsG1ptsG2cmr三段基因片段进行胶回收纯化后,通过融合PCR的方法获得重组片段ptsG1-cmr-ptsG2,结果(图3D)出现的条带与试验设计的同源重组片段ptsG1-cmr-ptsG2(2021 bp)大小相同,表明同源重组片段构建成功。
图3 同源重组片段ptsG1-cmr-ptsG2的构建

A:HD79基因组提取结果;M:DNA Marker DL15000;1:K. pneumoniae HD79基因组DNA;B:ptsG1ptsG2 PCR扩增结果;M:DNA Marker DL2000;1:ptsG1基因;2:ptsG2基因;C:cmr基因的PCR扩增结果;M:DNA Marker DL2000;1:cmr基因;D:同源重组片段ptsG1-cmr-ptsG2;M:DNA Marker DL15000;1:ptsG1-cmr-ptsG2基因

Full size|PPT slide

2.2 重组载体pT-ptsG1-cmr-ptsG2构建

将构建好的同源重组片段ptsG1-cmr-ptsG2与pMD18-T载体连接,将其转化至E. coli DH5α的感受态细胞中,在含有35 μg/mL Cm的LB平板筛选阳性克隆子。挑取长势良好的单菌落,利用M13F和M13R引物进行PCR验证和Hind III单酶切验证。PCR结果(图4A)显示,在2500 bp和1000 bp之间出现清晰的条带,说明PCR验证成功;单酶切结果(图4B)在5000 bp和2500 bp之间有明显条带,这与重组质粒pT-ptsG1-cmr-ptsG2的大小(4713 bp)相同,进一步证明重组质粒构建成功。
图4 重组载体pT-ptsG1-cmr-ptsG2构建

A:E. coli DH5α(pT-ptsG1-cmr-ptsG2)菌落PCR验证结果;M:DNA Marker DL15000;1-5:PCR产物;B:pT-ptsG1-cmr-ptsG2单酶切结果;M:DNA Marker DL15000;1:酶切片段

Full size|PPT slide

2.3 ΔptsG基因敲除菌株的构建

用试剂盒提取质粒pKD46后通过电转化法转入到K. pneumoniae HD79感受态细胞中,在含有2 mg/mL Amp的LB平板上培养过夜并挑取长势良好的单菌落进行PCR验证后证实(图5A),pKD46质粒成功转化至K. pneumoniae HD79中,这为进一步进行同源重组做好了准备。继续将ptsG1-cmr-ptsG2通过电转化的方法转化到含有pKD46质粒的K. pneumoniae HD79感受态细胞中,在含有1 mg/mL Cm的LB平板上培养过夜后发现有明显的克隆子生长(图5B),当利用ptsG-F和ptsG-R引物对进行PCR后显示(图5C)泳道1、3和4在2507 bp处出现清晰的条带,说明同源重组片段已经转化至K. pneumoniae HD79 (pKD46)中并发生了同源重组,将该菌株命名为K. pneumoniae HD79-N。
图5 △ptsG基因敲除菌株的构建

A:K. pneumoniae HD79(pKD46)菌落PCR验证结果;M:DNA Marker DL2000;1~7:PCR产物;B:ptsG1-cmr-ptsG2转化K. pneumoniae HD79(pKD46)感受态细胞;C:K. pneumoniae HD79(ptsG1-cmr-ptsG2)菌落PCR验证结果;M:DNA Marker DL15000;1~4:PCR产物

Full size|PPT slide

2.4 K. pneumoniae HD79与K. pneumoniae HD79-N菌株生长情况对比

图6所示,敲除ptsG基因后菌株的OD600值明显低于原始菌株K. pneumoniae HD79,发酵84 h时,K. pneumoniae HD79-N菌株OD600最大为9.42±0.03,K. pneumoniae HD79菌株最大为10.74±0.79,差异显著(P<0.05)。这可能是由于ptsG的敲除,使得葡萄糖运送至细胞内的主要形式被破坏,葡萄糖的摄取减少,细胞生长减弱。两株菌的pH均随着发酵时间的延长呈下降趋势,发酵至84 h时,K. pneumoniae HD79-N菌株的pH(4.77±0.02)要高于K. pneumoniae HD79菌株(4.48±0.10),这是因为K. pneumoniae HD79-N菌株摄取葡萄糖减少,导致乙酸等代谢产物均减少。因此,和原始菌株相比,K. pneumoniae HD79-N所测的pH升高。
图6 K. pneumoniae HD79与HD79-N发酵过程中OD600和pH变化情况

Full size|PPT slide

2.5 K. pneumoniae HD79与K. pneumoniae HD79-N菌株的底物消耗及2,3-BD产生情况

通过HPLC检测发酵液中糖以及2,3-BD的浓度,探究ptsG基因敲除后,菌株在混合糖的利用和2,3-BD浓度上的变化。如图7所示,ptsG的缺失大大提高了菌株对木糖的利用,在发酵末期,原始菌株K. pneumoniae HD79消耗木糖12.39±0.33 g/L,K. pneumoniae HD79-N菌株消耗木糖19.48±0.71 g/L,是原始菌株的1.57倍,差异极显著(P<0.01);然而,K. pneumoniae HD79-N发酵在84 h时仅消耗了45.08±0.23 g/L的葡萄糖(占初始葡萄糖浓度的85.05%),K. pneumoniae HD79在发酵24 h时就已将53 g/L的葡萄糖全部消耗殆尽,差异极显著(P<0.01)。最终,K. pneumoniae HD79和K. pneumoniae HD79-N产2,3-BD的浓度分别为10.33±0.18 g/L和9.81±0.38 g/L,较出发菌株减少了0.52 g/L,差异不显著(P>0.05)。综上结果表明,ptsG的敲除虽然可以减轻CCR,增加木糖的消耗,但与此同时葡萄糖的消耗以及2,3-BD浓度均降低。
图7 K. pneumoniae HD79与HD79-N发酵过程中糖和2,3-BD的浓度变化情况

Full size|PPT slide

2.6 K. pneumoniae HD79与HD79-N菌株中关键基因的表达情况

为了探究ptsG缺失对xyl操纵子转录水平的影响,将K. pneumoniae HD79与K. pneumoniae HD79-N菌株发酵至12 h,发酵液中仍有葡萄糖与木糖剩余,取此时的发酵液,采用qRT-PCR的方法检测ptsGxylAxylBxylFxylGxylHxylE基因的表达情况。如图8所示,与K. pneumoniae HD79菌株相比,K. pneumoniae HD79-N菌株ptsG基因的相对表达量降低了58%。此外,ptsG基因敲除后,K. pneumoniae HD79-N菌株的6个xyl基因mRNA的转录水平均提高12倍以上,最大达到16.55倍(xylG)。综上所述,ptsG基因敲除能够提高木糖操纵子相关基因的转录水平。由此证明,通过敲除ptsG基因可以有效地缓解K. pneumoniae HD79菌株的CCR效应。
图8 ptsGxylAxylBxylFxylGxylHxylE基因的转录水平

T检验结果分析,P<0.05为显著*P<0.01为极显著**

Full size|PPT slide

3 讨论

木质纤维素(例如玉米秸秆)完全水解生成的溶液主要包含葡萄糖和木糖,其比例约为2:1(w/w)[21]。若想经济有效的利用木质纤维素材料生产2,3-BD,则必须实现混合糖的共发酵[22-23]。因此,本试验构建ptsG基因敲除菌株K. pneumoniae HD79-N,在利用葡萄糖与木糖混合碳源(葡萄糖:木糖=2:1)发酵过程中,K. pneumoniae HD79-N菌株由于敲除ptsG基因显著减弱了CCR效应,使其能够同步利用葡萄糖与木糖生产2,3-BD,2,3-BD最终浓度达9.81±0.38 g/L。同时,K. pneumoniae HD79-N菌株木糖利用率[0.23±0.01 g/(L·h)]也比K. pneumoniae HD79菌株[0.15±0.00 g/(L·h)]提高了57.82%。DIEN等[24]研究结果显示,E. coli FBR19菌株(ΔptsG)在用葡萄糖和木糖混合碳源发酵时,其乳酸转化率为0.77 g/g,消耗75%的木糖。然而,在本研究中,将ptsG基因敲除后,K. pneumoniae HD79-N菌株的葡萄糖利用率[0.54±0.00 g/(L·h)]比K. pneumoniae HD79菌株[2.21±0.00 g/(L·h)]减少75.68%,2,3-BD浓度减少5.03%。这可能由于ptsG基因是参与PTS的主要葡萄糖转运蛋白EIICBGlc的编码基因[25]ptsG基因的失活,虽然使菌株CCR所需的分子机制遭到破坏,减弱了菌株的CCR效应,但也不可避免的减弱菌株对葡萄糖的利用,导致细胞生长受到影响及2,3-BD的浓度减少。这一现象与在大肠杆菌中的结果相似,ptsG基因的失活导致葡萄糖利用率降低[26]。此外,阴沟肠杆菌(Enterobacter cloaca)SDM04菌株在敲除ptsG基因后,也同样使葡萄糖利用率和2,3-BD浓度分别减少29.58%和10.80%[27]。然而,这并不是利用混合碳源发酵生产2,3-BD的理想结果。综上结果表明,ptsG基因的敲除不足以使菌株高效同步的利用葡萄糖与木糖,应该设计出在葡萄糖消耗过程中更有效地利用木糖的另一种策略。

4 结论

本研究为缓解K. pneumoniae的CCR效应,构建出工程菌株K. pneumoniae HD79-N。通过对此菌株生长状况、底物糖利用情况和2,3-BD产生量的检测,探究其在生长以及发酵性能上的变化。此外,通过qRT-PCR的方法检测菌株ptsG基因和木糖操纵子相关基因的相对表达量,初步探究K. pneumoniae的CCR的解除机制。结果表明,敲除ptsG基因后,K. pneumoniae HD79-N对葡萄糖的利用率[0.54±0.00 g/(L·h)]较原始菌株[2.21±0.00 g/(L·h)]下降了75.68%;而对木糖的利用结果发现,K. pneumoniae HD79-N菌株[0.23±0.01 g/(L·h)]较原始菌株[0.15±0.00 g/(L·h)]提高了57.22%。由此可见,ptsG基因的敲除减弱了K. pneumoniae HD79菌株的CCR效应,使菌株同时利用葡萄糖与木糖,但葡萄糖的利用以及2,3-BD的浓度相对降低;在原始菌株中,木糖转运蛋白(XylFGH和XylE)以及木糖降解酶(XylA和XylB)编码基因与PTS糖转运关键基因ptsG呈负相关,敲除ptsG基因后,xyl操纵子相关基因的相对表达量均提高12倍以上,最大达到16.55倍,木糖利用率显著提高。

References

[1]
CELIŃSKA E, GRAJEK W. Biotechnological production of 2,3-butanediol-current state and prospects[J]. Biotechnology advances, 2009, 27(6):715-725.
[2]
JI X J, HUANG H, OUYANG P K. Microbial 2,3-butanediol production: a state of the art review[J]. Biotechnology advances, 2011, 29(3):351-364.
[3]
BIALKOWSK A, ANETA M. Strategies for efficient and economical 2,3-butanediol production: new trends in this field[J]. World journal of microbiology & biotechnology, 2016, 32(12):200.
[4]
XIE N Z, CHEN X R, WANG Q Y, et al. Microbial routes to (2R, 3R)-2,3-butanediol: recent advances and future prospects[J]. Current topics in medicinal chemistry, 2017, 17(21):2433-2437.
[5]
PACIOREK-SADOWSKA J, CZUPRYŃSKI B. New compounds for production of polyurethane foams[J]. Journal of applied polymer science, 2006, 102(6):5918-5926.
[6]
BAEK H S, WOO B Y, YOO S J, et al. Composiyion containing meso-2,3-butanediol[P]. WO: EP20150853159, 2015-10-21.
[7]
KONG H G, SHIN T S, KIM T H, et al. Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field[J]. Frontiers in plant science, 2018, 9:90.
The volatile compound 2,3-butanediol, which is produced by certain strains of root-associated bacteria, consists of three stereoisomers, namely, two enantiomers (2R,3R- and 2S,3S-butanediol) and one meso compound (2R, 3S-butanediol). The ability of 2,3-butanediol to induce plant resistance against pathogenic fungi and bacteria has been investigated; however, little is known about its effects on induced resistance against viruses in plants. To investigate the effects of 2,3-butanediol on plant systemic defense against viruses, we evaluated the disease control capacity of each of its three stereoisomers in pepper. Specifically, we investigated the optimal concentration of 2,3-butanediol to use for disease control against Cucumber mosaic virus and Tobacco mosaic virus in the greenhouse and examined the effects of drench application of these compounds in the field. In the field trial, treatment with 2R,3R-butanediol and 2R,3-Sbutanediol significantly reduced the incidence of naturally occurring viruses compared with 2S, 3S-butanediol and control treatments. In addition, 2R, 3R-butanediol treatment induced the expression of plant defense marker genes in the salicylic acid, jasmonic acid, and ethylene signaling pathways to levels similar to those of the benzothiadiazole-treated positive control. This study reports the first field trial showing that specific stereoisomers of 2,3-butanediol trigger plant immunity against multiple viruses.
[8]
WU L, LI X, MA L, et al. Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana[J]. Journal of experimental botany, 2018, 69(22):5625-5635.
[9]
LAI H C, CHANG C J, YANG C H, et al. Activation of NK cell cytotoxicity by the natural compound 2,3-butanediol[J]. Journal of leukocyte biology, 2012, 92(4):807-814.
2,3-BTD activates NK cells cytotoxicity by NKG2D/NCRs pathways.
[10]
HSIEH S C, LU C C, HORNG Y T, et al. The bacterial metabolite 2,3-butanediol ameliorates endotoxin-induced acute lung injury in rats[J]. Microbes and infection, 2007, 9(12-14):1402-1509.
[11]
RYU C M, FARAG M A, HU C H, et al. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant physiology, 2004, 134(3):1017-1026.
Plant growth-promoting rhizobacteria, in association with plant roots, can trigger induced systemic resistance (ISR). Considering that low-molecular weight volatile hormone analogues such as methyl jasmonate and methyl salicylate can trigger defense responses in plants, we examined whether volatile organic compounds (VOCs) associated with rhizobacteria can initiate ISR. In Arabidopsis seedlings exposed to bacterial volatile blends from Bacillus subtilis GB03 and Bacillus amyloliquefaciens IN937a, disease severity by the bacterial pathogen Erwinia carotovora subsp. carotovora was significantly reduced compared with seedlings not exposed to bacterial volatiles before pathogen inoculation. Exposure to VOCs from rhizobacteria for as little as 4 d was sufficient to activate ISR in Arabidopsis seedlings. Chemical analysis of the bacterial volatile emissions revealed the release of a series of low-molecular weight hydrocarbons including the growth promoting VOC (2R,3R)-(-)-butanediol. Exogenous application of racemic mixture of (RR) and (SS) isomers of 2,3-butanediol was found to trigger ISR and transgenic lines of B. subtilis that emitted reduced levels of 2,3-butanediol and acetoin conferred reduced Arabidopsis protection to pathogen infection compared with seedlings exposed to VOCs from wild-type bacterial lines. Using transgenic and mutant lines of Arabidopsis, we provide evidence that the signaling pathway activated by volatiles from GB03 is dependent on ethylene, albeit independent of the salicylic acid or jasmonic acid signaling pathways. This study provides new insight into the role of bacteria VOCs as initiators of defense responses in plants.
[12]
NESSLER S, FIEULAINE S, PONCET S, et al. HPr kinase/phosphorylase, the sensor enzyme of catabolite repression in Gram-positive bacteria: structural aspects of the enzyme and the complex with its protein substrate[J]. Journal of bacteriology, 2003, 185(14):4003-4010.
[13]
MA K, HE M, YOU H, et al. Improvement of (R,R)-2,3-butanediol production from corn stover hydrolysate by cell recycling continuous fermentation[J]. Chemical engineering journal, 2018, 332:361-369.
[14]
DEUTSCHER J, KUSTER E, BERGSTEDT U, et al. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria[J]. Molecular microbiology, 1995, 15(6):1049-1053.
CcpA, the repressor/activator mediating carbon catabolite repression and glucose activation in many Gram-positive bacteria, has been purified from Bacillus megaterium after fusing it to a His tag. CcpA-his immobilized on a Ni-NTA resin specifically interacted with HPr phosphorylated at seryl residue 46. HPr, a phospho-carrier protein of the phosphoenolpyruvate: glycose phosphotransferase system (PTS), can be phosphorylated at two different sites: (i) at His-15 in a PEP-dependent reaction catalysed by enzyme I of the PTS; and (ii) at Ser-46 in an ATP-dependent reaction catalysed by a metabolite-activated protein kinase. Neither unphosphorylated HPr nor HPr phosphorylated at His-15 nor the doubly phosphorylated HPr bound to CcpA. The interaction with seryl-phosphorylated HPr required the presence of fructose 1,6-bisphosphate. These findings suggest that carbon catabolite repression in Gram-positive bacteria is a protein kinase-triggered mechanism. Glycolytic intermediates, stimulating the corresponding protein kinase and the P-ser-HPr/CcpA complex formation, provide a link between glycolytic activity and carbon catabolite repression. The sensitivity of this complex formation to phosphorylation of HPr at His-15 also suggests a link between carbon catabolite repression and PTS transport activity.
[15]
UM J, KIM D G, JUNG M Y, et al. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate[J]. Bioresource technology, 2017, 245:1567-1574.
[16]
GURAGAIN Y N, CHITTA D, KARANJIKAR M, et al. Appropriate lignocellulosic biomass processing strategies for efficient 2,3-butanediol production from biomass-derived sugars using Bacillus licheniformis DSM 8785[J]. Food and bioproducts processing, 2017, 104:147-158.
[17]
刘汝婷, 张倩, 郭西鹏, 等. ptsG/mglB双基因敲除对大肠杆菌发酵混合糖产L-乳酸的影响[J]. 中国酿造, 2021, 40(9):82-86.
[18]
石会玲, 周宇航, 何平, 等. 阴沟肠杆菌乳酸脱氢酶基因缺失突变株的构建及其生物学特性[J]. 中国农学通报, 2021, 37(23):29-37.
旨在应用自杀质粒重组技术,构建阴沟肠杆菌乳酸脱氢酶突变株,为进一步提高乙偶姻的产量和扩大菌株选择范围奠定基础。利用双酶切的方法将同源片段插入到自杀质粒pKR6K中,构建出ldh基因敲除质粒,然后利用细菌接合的方法敲除E. cloacae的ldh基因。成功克隆出两段E. cloacae乳酸脱氢酶基因的同源序列,长度分别为526 bp,通过序列比对分析,E. cloacae乳酸脱氢酶基因序列相似性为100%。通过对E. cloacae进行乳酸脱氢酶基因的敲除,成功构建一株ldh缺失重组菌株E. cloacae△ldh,同时2,3-丁二醇提高6.8%,乙酸提高了24.3%。E. cloacae乳酸脱氢酶缺失工程菌株构建成功,对利用微生物法工业化生产乙偶姻奠定基础。
[19]
杨奇. 大肠杆菌DH5α upp基因的敲除及其应用研究[D]. 南京: 南京理工大学, 2013.
[20]
陆竞争, 任顺利, 诸葛斌, 等. 磷酸转移酶系统关键基因敲除对Klebsiella pneumoniae产1,3-丙二醇的影响[J]. 食品与发酵工业, 2017, 43(8):22-26.
[21]
司阳, 夏黎明. 利用玉米秸秆水解液发酵生产2,3-丁二醇[J]. 食品与发酵工业, 2010, 36(2):26-29.
[22]
JI X J, HUANG H, DU J, et al. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca[J]. Bioresource technology, 2009, 100(21):5214-5218.
[23]
JOJIMA T, OMUMASABA C A, INUI M, et al. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook[J]. Applied microbiology and biotechnology, 2010, 85(3):471-480.
There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.
[24]
DIEN B S, NICHOLS N N, BOTHAST R J. Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid[J]. Journal of industrial microbiology & biotechnology, 2002, 29(5):221-227.
[25]
JAHREIS K, PIMENTEL-SCHMITT E F, BRUECKNER R, et al. Ins and outs of glucose transport systems in eubacteria[J]. Fems microbiology reviews, 2008, 32(6):891-907.
Glucose is the classical carbon source that is used to investigate the transport, metabolism, and regulation of nutrients in bacteria. Many physiological phenomena like nutrient limitation, stress responses, production of antibiotics, and differentiation are inextricably linked to nutrition. Over the years glucose transport systems have been characterized at the molecular level in more than 20 bacterial species. This review aims to provide an overview of glucose uptake systems found in the eubacterial kingdom. In addition, it will highlight the diverse and sophisticated regulatory features of glucose transport systems.
[26]
CLOMBURG J M, GONZALEZ R. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology[J]. Applied microbiology and biotechnology, 2010, 86(2):419-434.
[27]
LI L, LI K, WANG Y, et al. Metabolic engineering of Enterobacter cloacae for high yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars[J]. Metabolic engineering, 2015, 28:19-27.
Share on Mendeley
PDF(1995 KB)

Collection(s)

New Quality Productivity

118

Accesses

0

Citation

Detail

Sections
Recommended

/