Evaluation of nutrient composition and comparison of growth performance of juveniles of parentage grass carp, Ctenopharyngodon idellus, fed with bio-floc and Pennisetum sinese

于凌云, 刘邦辉 and 王广军

PDF(609 KB)
PDF(609 KB)
Chinese Agricultural Science Bulletin ›› 2014, Vol. 30 ›› Issue (35) : 132-138. DOI: 10.11924/j.issn.1000-6850.2014-1369

Evaluation of nutrient composition and comparison of growth performance of juveniles of parentage grass carp, Ctenopharyngodon idellus, fed with bio-floc and Pennisetum sinese

  • 于凌云, 刘邦辉 and 王广军
Author information +
History +

Abstract

To evaluate the value of biofloc technology nutrition, the growth traits and nutritional composition of muscle of grass carp farmed about 60 days were analyzed in the model of biofloc technology (BFT) (as the experimental group) and Pennisetum sinese Roxb( as the control group). As analyzed, the ratio of weight gain of grass carp using BFT were 1.14 times than the control group, and body length, survival rate and condition factor of grass carp were more than the control group. Crude protein and carbohydrate of muscle between the BFT and grass group were significant difference(P<0.05), however, crude fat and ash content of muscle of grass carp were basically identical. In addition, there are sixteen kinds of conventional amino acids and four kinds of delicious amino acids (Asp, Glu, Gly, Ala ); The total content of amino acid were(17.1±1.24)% and(16.803±1.030)% in two groups, respectively, but there were no significant difference between them(P>0.05). The total content of PUFA and HUFA were (32.20± 4.05) % and (34.61 ± 4.08) % in the experimental group, respectively; which was significantly higher than the control group(P<0.01).In summary, the model of BFT was not only improve the growth performance of the juvenile grass carp, but also increase the nutritive value of muscle under no changing the amino acid composition and delicious amino acid. So, BFT may serve as a new type of high quality bait of grass carp’s juveniles.

Key words

biofloc technology; grass carp; growth traits; muscle; amino acid.

Cite this article

Download Citations
于凌云, 刘邦辉 and 王广军. Evaluation of nutrient composition and comparison of growth performance of juveniles of parentage grass carp, Ctenopharyngodon idellus, fed with bio-floc and Pennisetum sinese. Chinese Agricultural Science Bulletin. 2014, 30(35): 132-138 https://doi.org/10.11924/j.issn.1000-6850.2014-1369

References

[1] Nelson J. Fishes of the world[M]. Wiley. New York, 1994.
[2] 谭书贞,董仕,边春媛,等.长江流域 3个群体草鱼 mtDNAD-Loop区段的 PCR-RFLP分析[J].南开大学学报.2007,40(3):106-112.
[3] 李朝兵,王广军,余德光,等.生物絮团对鳙鱼生长、肌肉氨基酸成分及营养评价的影响[J].江苏农业科学,2012,40(11):242-245.
[4] 罗亮,徐奇友,赵志刚,等.基于生物絮团技术的碳源添加对池塘养殖水质的影响[J].渔业现代化,2013,40(3):19-24.
[5] Avnimelech Y, Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture,1999,176(3/4):227-235.
[6] Asaduzaman M, Wahab M A, Verdegem M C J, et al. Effects of addition of tilapia Oreochromis niloticus and substrates for periphyton developments on pond ecology and production in C/Ncontrolled freshwater prawn Macrobrachium rosenbergii farming systems[J]. Aquaculture, 2009, 287(3-4):371-380.
[7] Bauer W, Prentice-Hernandez C, Tesser M B, et al. Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopennaeus vannamei[J]. Aquaculture, 2012, 342-343:112-116.
[8] Zhao P, Huang J, Wang X H, et al. The application of biofloc technology in high- intensive,zero exchange farming systems of Marsupenaeus japonicas[J]. Aquaculture, 2012, 354-355:97-106.
[9] 岳强,李彦芹,曹杰英,等.生物絮团对中华锯齿米虾生长及水质的影响[J].河北渔业,2012(2):3-6.
[10] Azim M E, Little D C. The biofloc technology (BFT) in indoor tanks: water quality biofloc composition and growth and welfare of Nile tilapia (Oreochromis niloticus) [J]. Aquaculture,2008,283(1/4): 29-35.
[11] 邱立疆,郁二蒙,吉红,等.日粮中添加生物絮团对鲫鱼幼鱼生长与肝脏抗氧化指标影响[J].家畜生态学报,2013(8):48-53.
[12] 赵志刚,徐奇友,罗亮,等.添加碳源对松浦镜鲤养殖池塘鱼体生长及水质影响[J].东北农业大学学报,2013,44(9):105-112.
[13] 卢炳国,王海英,谢骏,等.不同 C/N水平对草鱼池生物絮团的形成及其水质的影响[J].水产学报,2013,37(8):1220-1229.
[14] Pellet P L, Yong V R. Nutritional evaluation of protein food[M]. Tokyo: United National University Publishing Company,2005:26- 29.
[15] 桥本芳郞著,蔡完其,译.养鱼饲料学[M].北京:中国农业出版社, 1980:114-115.
[16] 邴旭文,蔡宝玉,王利平.中华倒刺鲃肌肉营养成分与品质的评价[J].中国水产科学,2005,12(3):211-215.
[17] 陆九韶,夏重志,李永发,等.陆封型大西洋鲑肌肉营养成分分析[J].水产学杂志,2004,17(2):72-75.
[18] 尹洪滨,孙中武,孙大江,等.6种养殖鲟鳇鱼肌肉营养成分的比较分析[J].大连水产学院学报,2004,19(2):92-96.
[20] 袁立强,李伟纯,马旭洲,等.瓦氏黄颡鱼肌肉营养成分的分析和评价[J].大连水产学院学报,2008:28(5):391-396.
[21] 杨元昊,李维平,龚月生,等.兰州鲇肌肉生化成分分析及营养学评价[J].水生生物学报,2009,33(1):54-60.
[22] 孔晓蓉.鳗鱼肌肉的氨基酸及营养价值[J].氨基酸和生物资源, 1995,17(2):33-35.
[23] Carole B, Michel L, Piene J, et al. Fatty acid composition of wild and farmed Atlantic salmo (Salmo salar) and rainbow trout (Oncorhynchus mykiss)[J]. Lipids, 2005,40(5):529-531.
[24] 杭晓敏,唐涌廉,柳向龙.多不饱和脂肪酸的研究进展[J].生物工程进展,2001,21(4):18-21.
[25] 罗国芝,朱泽闻,潘云峰,等.生物絮团技术在水产养殖中的应用[J].中国水产,2010(2):62-63.
[26] Asaduzzaman M, Rahman MM, Azim ME, et al. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds[J]. Aquaculture, 2010,306 (1/4):127-136.
[27] 李彦,刘立平,赵广学,等.养殖水体中添加碳源对水质及罗非鱼生长的影响[J].大连海洋大学学报,2013,28(1):55-60.
[28] 高春生,范光丽.淇河鲫肌肉营养成分分析及营养价值评价[J].淡水渔业,2006,36(3):33-36.
[29] 闫学春,梁利群,曹顶臣,等.转基因鲤与普通鲤的肌肉营养成分比较[J].农业生物技术学报,2005,13(4):528-532.
[30] Chamson A, Vbigtlander V, Myara I, et al. Collagen biosynthesis anomalies in prolidase deficiency:effect of glycyl-L-proline on the degradation of newly synthesized collagen[J]. Clin Physil Biochem, 1989,7(3/4):128-136.
[31] 毕香梅,郁二蒙,王广军,等.摄食青草和人工配合饲料的草鱼肌肉营养成分分析及比较[J].广东农业科学,2011(1):132-134.
[32] 黎祖福,付倩倩,张仪顺.鞍带石斑鱼肌肉营养成分及氨基酸含量分析[J].南方水产,2008,4(5):61-64.
[33] Mehmet C, Abdulla H, Dole T, et al. A comparision of the proximate composition and fatty acid profiles of zander (Sander lucioperca) from two different regions and climatic conditions[J]. Food Chem,2005,9(2):637-641.
[34] 周礼敬,沈东霞,詹会祥.鱼类肌肉营养成分与人体健康研究[J].畜牧与饲料科学,2013,34(5):69-71.
Share on Mendeley
PDF(609 KB)

Collection(s)

Aquatic fishery

16

Accesses

0

Citation

Detail

Sections
Recommended

/