To study the effect of CO2 concentration on carbon assimilation and water use efficiency of apricots, and to learn more about growth potential and ecological advantages of apricots under elevated atmospheric CO2 and global warming, the author measured photosynthesis parameters of 15 2-year-old apricot varieties with a Li - 6400 portable gas analyzer under natural CO2 concentration, half CO2 concentration, doubled CO2 concentration and tripled CO2 concentration. The results showed that there was a significant change on photosynthesis of apricots under the instantaneous variable CO2 concentration conditions. While CO2 concentration was elevated, the maximum photosynthesis rate, apparent quantum yield and water use efficiency increased, dark respiration rate and light compensation point decreased, light saturation point increased nonsignificantly, and the response of stomatal conductance and transpiration rate had some differences. Under the appropriately elevated CO2 concentration conditions, lower light and water were made better use, photosynthesis was promoted, assimilates of leaves were increased and carbon cycle was accelerated.
Key words
apricot; photosynthesis; instantaneous change of CO2 concentration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Fangmeier A, Chrost B, Hogy P, et al. CO2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity[J]. Environmental and Experi-mental Botany,2000,44:151- 164.
[2] Long S P, Ainsworth E A, Rogers A, et al. Rising atmospheric carbon dioxide: Plants face the future[J]. Annual Review of Plant Biology,2004,55:591-628.
[3] Murray M B, Smith R I, Friend A, et al. Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis)[J]. Tree Physiology, 2000,20(7):421-434.
[4] Matamala R, Drake B G. The influence of atmospheric CO2enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay[J]. Plant and Soil,1999,210(1): 93-101.
[5] 张征坤,张光灿,刘顺生,等.土壤水分对山杏光合作用日变化过程的影响[J].中国水土保持科学,2012(3):99-104.
[6] 陈志成,王志伟,王荣荣,等.不同土壤水分条件下珍珠油杏的光合光响应特征[J].西北植物学报,2012(10):2102-2107.
[7] 夏江宝,张光灿,刘京涛,等.遮光处理对山杏幼苗光合特性的影响[J].西北植物学报,2010(11):2279-2285.
[8] 孙山,张立涛,王家喜,等.低温弱光胁迫对日光温室栽培杏树光系统功能的影响[J].应用生态学报,2008(3):512-516.
[9] 杜国栋,吕德国,赵玲,等.高温对仁用杏光合特性及 PSⅡ光化学活性的影响[J].应用生态学报,2011(3):701-706.
[10] 吴芹,张光灿,裴斌,等.不同土壤水分下山杏光合作用 CO2响应过程及其模拟应用[J].生态学报, 2013(6):1517-1524.
[11] 常美花,刘会青,刘社平.加富 CO2和铺设反光膜对温室杏光合速率的影响[J].西北农业学报,2008(1):157-160.
[12] 夏江宝,张光灿,孙景宽,等.山杏叶片光合生理参数对土壤水分和光照强度的阈值效应[J].植物生态学报,2011,35(3):322-329.
[13] 常美花,张小红,师占君.加富 CO2和铺设反光膜对温室桃杏光合速率的影响[J].北方园艺,2006(4):45-46.
[14] 孙猛,刘威生,迟跃飞.日光温室内凯特和 9803杏光合特性及去果对源叶光合作用影响[J].北京农学院学报,2007,22(3):12-16.
[15] 郑凤英,彭少麟.植物生理生态指标对大气 CO2浓度倍增响应的整合分析[J].植物学报,2001,43(11):1101-1109.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}