Physiological Responses of Hydrilla verticillata to Cadmium and Cadmium Bioaccumulation

Chinese Agricultural Science Bulletin ›› 2014, Vol. 30 ›› Issue (5) : 249-253. DOI: 10.11924/j.issn.1000-6850.2013-1581
23

Physiological Responses of Hydrilla verticillata to Cadmium and Cadmium Bioaccumulation

Author information +
History +

Abstract

In order to evaluate the potential of phytoremediation application of Hydrilla verticillata, The accumulation of heavy metals and the changes of some physiological indexes for Hydrilla vericillata were investigated. The results showed that, compared with stems, leaves of Hydrilla accumulated higher concentrations of heavy metals. Moreover, the activities of SOD, POD and CAT first increased and then decreased as the Cd2+ concentration increased. The content of membranous peroxide MDA first decreased, and then remained stable and last increased. It concluded that activate the protective enzyme system could inhibit MDA formation. These results suggested that Hydrilla verticillata could accumulate a certain concentration of heavy metals, in a certain concentration range of heavy metals it exhibitted physiological adaptation. In summary, Hydrilla verticillata had the potential of phytoremediation.

Key words

Cd2+; Hydrilla verticillata; heavy metal; content detection; physiological indicators

Cite this article

Download Citations
Physiological Responses of Hydrilla verticillata to Cadmium and Cadmium Bioaccumulation. Chinese Agricultural Science Bulletin. 2014, 30(5): 249-253 https://doi.org/10.11924/j.issn.1000-6850.2013-1581

References

[1] 孙维峰,肖迪.水体重金属污染现状及治理技术[J].能源与节能, 2012(02):49-50.
[2] 徐礼生,吴龙华,高贵珍.重金属污染土壤的植物修复及其机理研究进展[J].地球与环境, 2010,38(3):372-377.
[3] Pilon-smits E. Annual review of plant biology[J].Phytore mediation ,2005,56:15-39.
[4] 李国新,张丹丹.轮叶黑藻对铅的吸附特征及生物吸附机理研究[J].中国环境科学,2011,31(8):1327-1333.
[5] Keskinkan O, Goksu M Z L, Yuceer A, et al. Comparison of theadsorption capabilities of Myriophyllum spicatum andCeratophyllum demersum for zinc, copper and lead [J]. Engineering in Life Sciences ,2007(2):192-196.
[6] 李国新,薛培英,李庆召.pH对穗花狐尾藻吸附重金属镉的影响[J].环境科学研究,2009,22(11):1329-1333.
[7] 李国新,李庆召,薛培英,等.黑藻吸附 Cd2+和 Cu2+的拓展 Langmuir模型研究[J].农业环境科学学报,2010,29(1):145-151.
[8] 颜昌宙,曾阿妍. 沉水植物对重金属 Cu2+的生物吸附及其生理反应[J].农业环境科学学报,2009,28(2):336-370.
[9] Lesage E, Mundia C, Rousseau D P L, et al. Sorption of Co,Cu,Ni and Zn from industrial effluents by the submerged aquaticmacrophyte Myriophyllum spicatum L.[J].Ecology Engineering,2007,30(4):320-325.
[10] 薛培英.铜、砷单一及复合污染对黑藻的毒性效应[J].环境科学研究,2011,24(9):1052-1058.
[11] 刘云,张木兰.沉水植物修复中的种芽预处理调控研究——以轮叶黑藻为例[J].安徽农业科学,2009,37(23):1095-1098.
[12] 胡啸,蔡辉.3种类型水生植物及其组合对污染水体中铬、氮和磷的净化效果研究[J].水处理技术,2011,38(4):45-54.
[13] 马旻,朱昌雄.几种植物对水产养殖废水的修复效果[J].环境科学与技术,2011,34(6):18-22.
[14] 孙建,铁柏清.单一重金属胁迫对灯心草生长及生理生化指标的影响[J].土壤学报,2007,38(1):121-127.
[15] 刘立云,王萍.火焰原子吸收法测定海南槟榔叶片中金属元素的研究[J].光谱学与光谱分析[J],2008,28(12):2989-2992.
[16] 陈炜彬,黄俊生.火焰原子吸收法测定植物叶片中Pb、 Cd、 Cu、 Zn含量[J].广东微量元素科学,2004,11(7):48-51.
[17] 李合生,孙群.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
[18] 李合生.植物生理生化实验指导[M].北京:高等教育出版社,2000.
[19] Pallavi S, Rama S D. Drought Induces Oxidative Stress and Enhances the Activities of Antioxidant Enzymes in Growing Rice Seedlings[J]. Plant Growth Regulation, 2005,46(3):209-221.
[20] 杜长霞,李娟,郭世荣,等.外源亚精胺对盐胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响[J].西北植物学报,2007,27(6):1179-1184.
[21] 李楠,黄佳丽.干旱胁迫对委陵菜膜脂过氧化作用及保护酶活性的影响[J].中国草地学报,2011,33(4):73-77.
[22] 王建明,王松良.Cd胁迫对菜用大豆生长与细胞保护酶系统的影响[J].福建农林大学学报,2012,41(5):455-459.
[23] 王兴明,刘登义.镉处理对油菜生长和抗氧化酶系统的影响[J].应用生态学报,2006,17(1):102-106.
[24] 李福燕.热带地区不同水稻品种对土壤镉胁迫的生理生化响[J].生态学杂志,2010,29(4):821-825.
Share on Mendeley

17

Accesses

0

Citation

Detail

Sections
Recommended

/