The Advance of Physiological Mechanism of Nitrogen Assimilation-Transport and Utilization, and Genetic Basis of Low Nitrogen Tolerance in Rice

Chinese Agricultural Science Bulletin ›› 2014, Vol. 30 ›› Issue (3) : 1-9. DOI: 10.11924/j.issn.1000-6850.2013-0799
23

The Advance of Physiological Mechanism of Nitrogen Assimilation-Transport and Utilization, and Genetic Basis of Low Nitrogen Tolerance in Rice

Author information +
History +

Abstract

Nitrogen is one of the essential nutrients that are vital to rice growth and development. Also, it is one of the most in-demand mineral nutrient elements. In the process of rice growth, the applied amount of nitrogen per unit area and a low utilization rate has become the two biggest problems constraining its development. The aim was to provide a reference for further analysis of the molecular mechanisms of low nitrogen tolerance. This paper summarized the physiological mechanism of uptake, transport and utilization of nitrogen in rice and the characteristics of morphological and physiological in nitrogen efficiency rice, analyzed the recent progress of the genetic basis of low nitrogen tolerance, including QTL mapping and gene cloning of low nitrogen, transcriptome and proteome. The research about molecular mechanism response to nitrogen in rice was few. The relevant mechanism of uptake, transport and use of nitrogen was still a mystery. Based on this, research on genes/QTLs related to assimilation, transport and utilization of nitrogen and the genetic basis of low nitrogen tolerance was an effective way to develop low nitrogen tolerance varieties.

Key words

rice; assimilation; transport and utilization of nitrogen; physiological mechanism; low nitrogen tolerance; genetic basis

Cite this article

Download Citations
The Advance of Physiological Mechanism of Nitrogen Assimilation-Transport and Utilization, and Genetic Basis of Low Nitrogen Tolerance in Rice. Chinese Agricultural Science Bulletin. 2014, 30(3): 1-9 https://doi.org/10.11924/j.issn.1000-6850.2013-0799

References

[1] Food and Agriculture Organization of the United Nations. Current world fertilizer trends and outlook to 2011/12[R]. Rome, Italy: Food and Agriculture Organization of the United Nations,2008.
[2] 杨林章,孙波,刘健,等.农田生态系统养分迁移转化与优化管理研究[J].地球科学进展,2002,17(3): 441-445.
[3] Wei H Y, Zhang H C, Dai Q G, et al. Characteristics of matter production and accumulation in rice genotypes with different N use efficiency[J]. Acta Agron Sin, 2007,33(11):1802-1809.
[4] 殷春渊,张庆,魏海燕,等.不同产量类型水稻基因型氮素吸收、利用效率的差异[J].中国农业科学,2010,43(1):39-50.
[5] 戢林,李延轩,张锡洲,等.氮高效利用基因型水稻根系形态和活力特征[J].中国农业科学,2012,45(23):4770-4781.
[6] Marschner H, Kirby E A, Engels C. Importance of cycling and recycling of mineral nutrients within plants for growth and development[J].Botanica Acta ,1997,110:265,273.
[7] Shimono H, Bunce J A. Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration[J]. Annals of Botany, 2009,103:87-94.
[8] Stitt M. Nitrate regulation of metabolism and growth[J]. Current Opinion in Plant Biology,1999,2:178-186.
[9] 李永夫,罗安程,黄继德,等.不同磷效率水稻基因型根系形态和生理特性的研究.浙江大学学报[J].农业与生命科学版,2006,32(6): 658-664.
[10] 台德卫,张效忠,苏泽胜,等.不同磷营养胁迫下水稻苗期性状基因型差异的研究[J].分子植物育种,2005,3(5):704-710.
[11] 李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报,2001,43(11):1154-1160.
[12] Li Y F, Luo A C, Wei X H, et al. Genotypic Variation of Rice in Phosphorus Acquisition from Iron Phosphate: Contributions of Root Morphology and Phosphorus Uptake Kinetics[J]. Russian Journal of Plant Physiology,2007,54(2):230-236.
[13] Witcombe J R, Hollington P A, Howarth C J, et al. Breeding for abiotic stresses for sustainable agriculture[J].Philosophical Transactions of the Royal Society B,2008,363:703-716.
[14] Miller A J, Fan X R, Orsel M, et al. Nitrate transport and signaling [J]. J Exp Bot,2007,58(9):2297-2306.
[15] 蔡超.禾谷类作物高亲和力 NO3-吸收系统基因表达调控研究[D].北京:中国科学院研究生院,2007.
[16] 胡延章,肖国生,黄小云,等.水稻 OsNRT1-d 启动子的分离和功能分析[J].西北植物学报,2010,7:1289-1295.
[17] Lin C M, Koh S, Stacey G, et al. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice[J]. Plant Physiology,2000,122:379-388.
[18] Cai C, Wang J Y, Zhu Y G, et al. Gene structure and expression of the high-affinity nitrate transport system in rice roots[J]. Journal of Integrative Plant Biology,2008,50:443-451.
[19] Yan M, Fan X, Feng H, et al. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3 anitrate transporters to provide uptake over high and low concentration ranges[J]. Plant Cell and Environment,2011,34:1360-1372.
[20] Feng H, Yan M, Fan X, et al. Miller A J, Xu G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany,2011,62: 2319-2332.
[21] Suenaga A, Moriya K. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants [J]. Plant Cell Physoil,2003,44(2):206-211.
[22] Sonoda Y, Ikeda A, Saiki S, et al. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice[J]. Plant and Cell Physiology,2003,44:1396-1402.
[23] 赵首萍,赵学强,施卫明.高等植物氮素吸收分子机理研究进展[J],土壤,2007,39(2):173-180.
[24] Wang W H, Kohler B, Cao F Q, et al. Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis[J]. NewPhytologist,2012,193:432–444.
[25] 江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径[J].中国水稻科学,2002,16(3);261-264.
[26] Vinod K K, Heuer S. Approaches towards nitrogen and phosphorus efficient rice[J].AoB PLANTS,2012.
[27] Fan J B, Zhang Y L, Turner D, et al. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency[J]. Pedosphere,2010,20:446-455.
[28] Campbell W H. Molecular control of nitrate reductase and other enzymes involved in nitrate assimilation. In: Foyer CH,Noctor G, eds. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism[J]. The Netherlands: Kluwer Academic, 2002,35-48.
[29] Becker T W, Foyer C, Caboche M. Light-regulated expression of nitrate reductase and nitrite reductase genes in tomato and in the phytochrome—deficient aurea mutant of tomato[J].Planta,1992,188; 39-47.
[30] Ishiyama K, Kojima S, Takahashi H, et al. Cell type distinct accumulation of mRNA and protein for NADH dependent glutamate synthase in rice roots in response to the supply of NH4 + [J]. Plant Physiology and Biochemistry,2003,41:643-647.
[31] Hirel B, Lea P J. The biochemistry, molecular biology and genetic manipulation of primary ammonia assimilation. In:Foyer H, Noctor G, eds. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism[J]. The Netherlands:Kluwer Academic , 2002:71-92.
[32] Lea P J, Miflin B J. Nitrogen assimilation and its relevance to crop improvement. In: Foyer C, Zhang H, eds. Nitrogen metabolism in plants in the post-genomic era[J]. Annual Plant Reviews, Vol.42. West Sussex: Blackwell Publishing Ltd, 2011:1-40.
[33] Tabuchi M, Sugiyama K, Ishiyama K, et al. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1,a cytosolic glutamine synthetase1;1[J]. Plant Journal,2005,42: 641-651.
[34] Hoshida H, Tanaka Y, Hibino T, et al. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase[J]. Plant Molecular Biology,2000,43:103-111.
[35] Andrews M, Lea P J, Raven J A, et al. Can geneticmanipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? [J]. An assessment.Annals of Applied Botany,2004,145:25-40.
[36] Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (O. sativa L.) [J]. Journal of Experimental Botany,2007,58:2319-2327.
[37] Tamura W, Kojima S, Toyokawa A, et al. Disruption of a novel NADH-glutamate synthase 2 gene caused marked reduction in spikelet number of rice[J]. Frontiers in Plant Science,2011,2:57.
[38] Fu J D, Lee B W. Changes in photosynthetic characteristics during grain filling of functional stay-green rice SNUSG1 and its F1 hybrids[J]. Journal of Crop Science and Biotechnology,2008,11: 75-82.
[39] Yoo S C, Cho S H, Zhang H, et al. Quantitative trait loci associated with functional stay-green SNU-SG1 in rice[J]. Molecules and Cells,2007,24:83-94.
[40] Fu J D, Yan Y F, Kim M Y, et al. Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.)[J].Genome, 2011,54:235-243.
[41] 徐富贤,熊洪,谢戎,等.水稻氮素利用效率的研究进展及其动向[J].植物营养与肥料学报,2009,15(5);1215-1225.
[42] Zeng J M, Cui K H, Huang J L, et al. Responses of physio-biochemical properties to N fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.). Acta Agron Sin, 2007,33(7):1168-1176.
[43] Wei H Y, Zhang H C, Zhang S F, et al. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies[J]. Acta Agron Sin, 2008,34(3):429-436.
[44] 郑家奎,文春阳,张涛,等.耐低氮水稻材料筛选及筛选指标研究[J].安徽农业科学,2009,37(16):7361-7363.
[45] 朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异[J].中国水稻科学,2003,17(3):233-238.
[46] 钟代斌,陆雅海,郭龙彪,等.氮高效水稻种质资源筛选的初步研究[J].植物遗传资源科学,2001,2(4):16-20.
[47] 黄农荣,钟旭华,郑海波.水稻氮高效基因型及其评价指标的筛选[J].中国农学通报,2006,22(6):29-34.
[48] 詹镇远,方瑾瑜,徐志文.水稻营养生长期谷氨酰胺合成酶活性的研究[J].安徽农业科学,2011,39(18):10768-10769.
[49] 方萍,陶勤南,吴平,等.水稻吸氮能力与氮素利用率的 QTLs 及其基因效应分析[J].植物营养与肥料学报,2001,7(2):159-165.
[50] Shan Y H , Wang Y L, Pan X B. Mapping of QTLs for nitrogen use efficiency and related traits in rice [J].Scientia Agricultura Sinica, 2005,4:721-727.
[51] Tong H H, Chen L, Li W P, et al. Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica,2011,28:495-509.
[52] Cho Y I, Jiang W Z. Identification of QTLs associated with physiological nitrogen use efficiency in rice [J]. Mol. Cells, 2007, 23:72-79.
[53] Senthilvel S, Vinod K K. QTL and QTL × environment effects on agronomic and nitrogen acquisition traits in rice [J]. Integr. Plant Biol.2008,50;1108-1117.
[54] Feng Y, Cao L Y, Wu W M, et al. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice(Oryza sativa L.) [J]. Plant Breed, 2010,129:652-656.
[55] 吕海霞,周广生,丁泽红,等.水稻染色体片段代换系对氮反应的QTL分析[J].分子植物育种,2010,8(6):1074-1081.
[56] 王彦荣,代金贵,大杉立,等.水稻苗期氮素吸收及其相关性状的QTL分析[J].中国水稻科学,2010,24(5):463-468.
[57] 郑修文,张文会,赵志超,等.水稻 DH群体苗期耐低氮能力 QTL定位分析[J].江苏农业科学,2010(3):42-43.
[58] Wei D, Cui K H, Ye G Y, et al. QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice[J].Plant Soil, 2012,359(2):281-295.
[59] 唐江云,张涛, 蒋开锋,等.利用基础导入系群体定位氮胁迫下水稻产量性状 QTL[J].农业生物技术学报,2011,19(6):996-1002.
[60] Lian X, Xing Y, Yan H, et al. QTLs for low niogen tolerance at seedling stage identified using a recombinant inbred line population derived from anelite rice hybrid[J]. Theoretical and Applied Genetics,2005,112:85-96.
[61] Yamaya T, Obara M. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice[J]. J Exp Bot, 2002,53; 917-925.
[62] 邓若磊,谷俊涛,路文静,等.水稻铵转运蛋白基因 OsAMT1;4 和OsAMT5的特征分析、功能和表达[J].中国农业科学,2007,40(11): 2395-2402.
[63] Shrawat A K, Carroll R T. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase[J]. Plant Biotechnology Journal,2008,6: 722-732.
[64] Bi Y M, Kant S. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen responsive early nodulin gene identified from rice expression profiling[J].Plant,Cell and Environment,2009,33(2):304.
[65] Terao T, Nagata K J. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice[J]. Theor Appl Genet,2010,120:875-893.
[66] 张锦伟.水稻根系发育调控基因 OsGLU3的克隆与功能研究[D].杭州:浙江大学,2010,58-73.
[67] 马雪峰.水稻氮代谢相关基因 OsARG 的克隆与功能分析[D].北京:中国农业科学院,2011,52-56.
[68] Kurai T, Wakayama M. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions[J]. Plant Biotechnology Journal,2011,9;826-837
[69] Zheng X N, Chen B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications,2009,379:985-989.
[70] Li F, Guo S Y, Zhao Y. Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic Arabidopsis[J]. Plant Cell Rep, 2010, 29:977-986.
[71] Nakashima K, Takasaki H, Mizoi J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta , 2012,1819:97-103.
[72] Jin G H, Gho H J. A systematic view of rice heat shock transcription factor family using phylogenomic analysis[J].Journal of Plant Physiology,2013,170:321-329.
[73] Lian X M, Wang S P, Zhang J, et al. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray[J]. Plant Molecular Biology, 2006, 60:617-631.
[74] 张华珍,吴昊,李香花,等.一个低氮诱导表达的水稻Dof转录因子OsDof-13的分离和转化[J].分子植物育种,2007,5(4):455-460.
[75] Zhao M H, Zhang W Z, Ma D R, et al. Altered Expression of Transcription Factor Genes in Rice Flag Leaf under Low Nitrogen Stress[J]. Rice Science, 2012,19(2):100-107
[76] Kim J K, Bamba T, Harada K, et al. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment[J].Journal of Experimental Botany, 2007,58:415-424.
[77] Li X Y, Yang M F, Chen H, et al. Abscisic acid pretreatment enhances salt tolerance of rice seedings; Protemic evidence[J]. Biochimica et Biophysica,2010,1804(4):929-940.
[78] Jagadish S V K, Muthurajan R, Oane R. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J].Journal of experimental botany,2010,61(1): 143-156.
[79] Kim D H, Shibato J K, Kim D W, et al. Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species[J].Physiology and Molecular Biology of Plants,2009,15(1):31-41.
[80] 宁书菊,赵敏,向小亮,等.不同氮素水平下水稻生育后期叶片和籽粒的蛋白质组学[J].应用生态学报,2010,21(10):2573-2579.
[81] Ding C Q, You J, Liu Z, et al. Proteomic Analysis of Low Nitrogen Stress-Responsive Proteins in Roots of Rice[J].Plant Mol Biol Rep, 2011,29:618-625.
[82] Song C, Zeng F R, Ma W J, et al. Proteomic analysis of nitrogen stress-responsive proteins in two rice cultivars differing in N utilization efficiency[J]. Jiomics, 2011,1:78-87.
[83] 邵彩虹,钱银飞,唐秀英,等.养分胁迫对水稻籽粒灌浆充实影响的蛋白质组学研究[J].中国水稻科学,2012,26(3):267-274.
[84] Kim S G, Wang Y M, Wu J, et al. Physiological and proteomic analysis of young rice leaves grown under nitrogen-starvation conditions[J].Plant Biotechnology Reports,2011,5(4):309-315.
Share on Mendeley

Accesses

Citation

Detail

Sections
Recommended

/