Effects of Exogenous Nitric Oxide on Seedling Growth, Reactive Oxygen Species and Photosynthetic Characteristic of Wheat Under UV-B Stress

Chinese Agricultural Science Bulletin ›› 2013, Vol. 29 ›› Issue (9) : 43-50. DOI: 10.11924/j.issn.1000-6850.2012-2295
23

Effects of Exogenous Nitric Oxide on Seedling Growth, Reactive Oxygen Species and Photosynthetic Characteristic of Wheat Under UV-B Stress

Author information +
History +

Abstract

ML7113 wheat seedling was used for test materials for the purpose of investigating the effects of exogenous nitric oxide on wheat seedling growth, reactive oxygen species and photosynthetic characteristic under UV-B stress. Sodium nitroprusside (SNP) was selected as an exogenous nitric oxide (NO) donor, and the seed of wheat was pre-soaked with 0.1 mmol/L SNP for 24 h. Under the UV-B stress conditions, there were four treatment groups including control group (CK), ultraviolet ray UV-B stress treatment group (B), UV-B and sodium nitroprosside composite treatment group (B+SNP) and sodium nitroprosside individual treatment group (SNP). 7 days sampling after treatment respectively was selected to measure soluble sugar, soluble protein, proline, MDA, O2-, H2O2, stomatal density, photosynthetic pigments and chlorophyll fluorescence parameters. The results showed that, NO donor SNP could significantly increase the plant height of wheat-seedling after UV-B stress and soluble sugar, soluble protein and proline contents in leaves increased by 19.69%, 15.25% and 41.36%. At the same time, stomatal density of leaf positive surface increased by 10.34%. SNP could make photosynthetic pigments contents (chlorophyll and carotenoid) improve by 12.43% and 5.99%, and SNP could significantly raise their chlorophyll fluorescence parameter Fv/Fm and Fv/F0 by 0.5% and 5.16% compared with CK. Meanwhile, SNP could respectively decrease the level of MDA and H2O2 by 27.30% and 74.92% compared with CK and O2- producing rate significantly reduced by 24.47% . Related physiological indexes material content increase was needed to response to the wheat seedling damage under UV-B stress. While appropriate concentration of exogenous NO (0.1 mmol/L) could alleviate wheat seedling damage effect under UV-B stress. Consequently, exogenous NO could enhance wheat stress adaptive capacity under UV-B stress.

Key words

nitric oxide; UV-B stress; wheat; growth; reactive oxygen species; photosynthetic characteristic

Cite this article

Download Citations
Effects of Exogenous Nitric Oxide on Seedling Growth, Reactive Oxygen Species and Photosynthetic Characteristic of Wheat Under UV-B Stress. Chinese Agricultural Science Bulletin. 2013, 29(9): 43-50 https://doi.org/10.11924/j.issn.1000-6850.2012-2295

References

[1] 张君玮,周青.UV-B辐射对植物水分代谢的影响[J].中国生态农业学报,2009,17(4):829-833.
[2] 徐华,贺军民,黄辰,等.UV-B辐射对蚕豆叶片气孔运动的间接效应与NO和H2O2有关[J].西北植物学报,2006,26(1):78-85.
[3] 李永锋,韩榕.He-Ne激光对增强 UV-B辐射小麦叶片显微结构及光合特性的影响[J].西北植物学报,2008,28(8):1643-1648.
[4] 周党卫,韩发,滕中华,等.UV-B辐射增强对植物光合作用的影响及植物的相关适应性研究[J].西北植物学报,2002,22(4):1004-1010.
[5] 闫生荣,黄晓华,李春辉,等.镧对 UV-B 辐射胁迫下大豆幼苗活性氧代谢的动态效应[J].中国油料作物学报,2006,28(4):431-435.
[6] 李方民,陆治国,王勋陵,等.CO2激光预处理对UV-B辐射引起的小麦幼苗脂质过氧化伤害的防护作用[J].光子学报,2006,35(4): 561-564.
[7] 高丽美,李永峰,韩榕.He-Ne激光对增强 UV-B辐射后小麦幼苗光合作用的影响[J].广西植物,2011,31(1):117-123.
[8] Arasimowicz M, Floryszak-Wieczorek J. Nitric oxide as a bioactive signaling molecule in plant stress responses[J]. Plant Science,2007, 172(5):876-887.
[9] 郑春芳,姜东,戴廷波,等.外源一氧化氮供体硝普钠浸种对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响[J].生态学报,2010,30 (5):1174-1183.
[10] 汤绍虎,周启贵,孙敏,等.外源NO对渗透胁迫下黄瓜种子萌发、幼苗生长和生理特性的影响[J].中国农业科学,2007,40(2):419-425.
[11] 阮海华,刘开力,徐朗莱.外源一氧化氮供体对盐胁迫下小麦幼苗叶片谷胱甘肽抗氧化酶系统的影响[J].作物学报,2005,31(9): 1144-1149.
[12] Shi Q, Ding F, Wang X, et al. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress[J]. Plant Physiology and Biochemistry,2007,45(8):542-550.
[13] 樊怀福,郭世荣,焦彦生,等.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J].生态学报,2007,27(2): 546-553.
[14] 肖强,陈娟,吴飞华,等.外源NO供体硝普钠(SNP)对盐胁迫下水稻幼苗中叶绿素和游离脯氨酸含量以及抗氧化酶的影响[J].作物学报,2008,34(10):1849-1853.
[15] Xue L, Li S, Sheng H, et al. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium[J]. Current Microbiology,2007,55(4):294-301.
[16] 阮海华,沈文飚,叶茂炳,等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报,2001,46(23):1993-1997.
[17] 刘开力,凌腾芳,刘志兵,等.外源一氧化氮供体浸种对盐胁迫下水稻幼苗生长的影响[J].植物生理学通讯,2004,40(4):419-422.
[18] 阮海华,沈文飚,徐朗莱.一氧化氮调节盐胁迫下小麦幼苗根部质膜 H+-ATPase 和焦磷酸酶活性提高耐盐性[J].植物学报,2004,46 (4):415-422.
[19] 张华,沈文飚,徐朗莱.一氧化氮对渗透胁迫下小麦种子萌发及其活性氧代谢的影响[J].植物学报,2003,45(8):901-905.
[20] 王淼,李秋荣,付士磊,等.外源一氧化氮对干旱胁迫下杨树光合作用的影响[J].应用生态学报,2005,16(2):218-222.
[21] Fales F W. The assimilation and degradation of carbohydrates by yeast cells[J]. Journal of Biological Chemistry,1951,193(1):113-124.
[22] Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein-dye binding[J]. Annual Review of Biochemistry,1976(72):248-254.
[23] 张殿忠,汪沛洪,赵会贤.小麦叶片中游离脯氨酸含量的测定[J].植物生理学通讯,1990,26(4):62-65.
[24] Du Z, Bramlage W J. Modified thiobarbituric acid assay for measuring lipid peroxidation in sugar rich plant tissue extracts[J]. Journal of Agricultural and Food Chemistry,1992,40(9):1566-1570.
[25] Sui N, Liu X, Wang N, et al. Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene[J]. Photosynthetica,2007,45(3):447-454.
[26] Moloi M J, Westhuizen A J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid[J]. Journal of Plant Physiology,2006,163(11):1118-1125.
[27] 师长海,李玉欣,董宝娣,等.禾本科植物叶片表皮气孔观察的样品制备方法改良[J].植物生理学通讯,2010,46(4):395-398.
[28] Arnon D. Copper enzyme in chloroplast, Polyphenol oxidase in Beta vulgaris[J]. Plant Physiology,1949(24):1-25.
[29] Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomemranes[J]. Methods Enzymol,1987(148): 350-382.
[30] Jansen M A K, Van den Noort R E, Tan M Y A, et al. Phenol-Oxidizing Peroxidases Contribute to the Protection of Plants from Ultraviolet Radiation Stress[J]. Plant Physiol,2001(126): 1012-1023.究:进展和展望[J].自然科学进展,2008,18(1):10-24.
[32] 沈文飚.硝酸还原酶也是植物体内 NO合成酶[J].植物生理学通讯, 2003,39(2):168-170.
[33] Leshem Y Y, Hamaraty E. Plant aging: the emission of NO and ethylene and effect of NO2 releasing compounds on growth of pea (Pisum sativum) foliage[J]. Plant Physiol,1996(148):258-263.
[34] 牛传坡,蒋静艳,黄耀.UV-B辐射强度变化对冬小麦碳氮代谢的影响[J].农业环境科学学报,2007,26(4):1327-1332.
[35] 吴雪霞,朱月林,朱为民,等.外源一氧化氮对 NaCl胁迫下番茄幼苗生理影响[J].中国农业科学,2006(39):575-581.
[36] Gitz D C, Liu G L, Britz S J, et al. Ultraviolet-B effects on stomatal density, water-use efficiency and stable Carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars[J]. Environmental and Experimental Botany,2005(53): 343-355.
[37] 郑玉龙,姜春玲,冯玉龙.植物的气孔发生[J].植物生理学通讯,2005, 41(6):847-850.
[38] 张君玮,周青.Ce(Ш)对 UV-B辐射下大豆幼苗水分代谢影响的机理[J].中国生态农业学报,2009,17(3):570-573.
[39] 张树海,武海.青海高原及上海平原地区植物叶片光合作用的光抑制[J].西北植物学报,1999,19(1):56-66.
[40] Okada M, Kitajima M. Inhibition of photosystem in chloroplasts by UV-B radiation[J]. Plant Cell Physiol,1976(17):35.
[31] 刘维仲,张润杰,裴真明,等.一氧化氮在植物中的信号分子功能研究:进展和展望[J].自然科学进展,2008,18(1):10-24.
[32] 沈文飚.硝酸还原酶也是植物体内 NO合成酶[J].植物生理学通讯, 2003,39(2):168-170.
[33] Leshem Y Y, Hamaraty E. Plant aging: the emission of NO and ethylene and effect of NO2 releasing compounds on growth of pea (Pisum sativum) foliage[J]. Plant Physiol,1996(148):258-263.
[34] 牛传坡,蒋静艳,黄耀.UV-B辐射强度变化对冬小麦碳氮代谢的影响[J].农业环境科学学报,2007,26(4):1327-1332.
[35] 吴雪霞,朱月林,朱为民,等.外源一氧化氮对 NaCl胁迫下番茄幼苗生理影响[J].中国农业科学,2006(39):575-581.
[36] Gitz D C, Liu G L, Britz S J, et al. Ultraviolet-B effects on stomatal density, water-use efficiency and stable Carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars[J]. Environmental and Experimental Botany,2005(53): 343-355.
[37] 郑玉龙,姜春玲,冯玉龙.植物的气孔发生[J].植物生理学通讯,2005, 41(6):847-850.
[38] 张君玮,周青.Ce(Ш)对 UV-B辐射下大豆幼苗水分代谢影响的机理[J].中国生态农业学报,2009,17(3):570-573.
[39] 张树海,武海.青海高原及上海平原地区植物叶片光合作用的光抑制[J].西北植物学报,1999,19(1):56-66.
[40] Okada M, Kitajima M. Inhibition of photosystem in chloroplasts by UV-B radiation[J]. Plant Cell Physiol,1976(17):35.
Share on Mendeley

Collection(s)

Triticum aestivum L.

17

Accesses

0

Citation

Detail

Sections
Recommended

/