The Progress on the Pigmentation of the Testa in Arabidopsis thaliana

Wan Huafang, Liang Ying

Chinese Agricultural Science Bulletin ›› 2005, Vol. 21 ›› Issue (5) : 233-233. DOI: 10.11924/j.issn.1000-6850.0505233
目次

The Progress on the Pigmentation of the Testa in Arabidopsis thaliana

  • Wan Huafang, Liang Ying
Author information +
History +

Abstract

Flavonoids are responsible for the testa color of Arabidopsis thaliana. The biosynthesis process of flavonoids is influenced by many types of genes. Some of the genes act as structure genes (such as TT4,,TT5, TT6, TT7, FLS1, TT3, LDOX and BAN); Some of them encode enzyme as regulating genes (TT1, TT2, TT8, TTG1, TTG2 and TT16);others encode transfering proteins (TT12, TT19). Mutation of one or more of them can influence the biosynthesis of flavonoids causing the varation of the testa of Arabidopsis thaliana. This review deals with the variation of testa luster as well as the mechanism of flavonoid biosynthesis in Arabidopsis thaliana .

Key words

Arabidopsis thaliana;Transparent testa gene;Flavonoid biosynthesis;Pigment

Cite this article

Download Citations
Wan Huafang, Liang Ying. The Progress on the Pigmentation of the Testa in Arabidopsis thaliana. Chinese Agricultural Science Bulletin. 2005, 21(5): 233-233 https://doi.org/10.11924/j.issn.1000-6850.0505233

References

1Winkel-Shirley B. Flavonoid Biosynthesis.A Colorful Model for Genetics, Biochemistry, CellBiology,andBiothehnology.Plant Physiol, 2000,126:485~493
2Chapple, C C S., Shirley, B W, Zook M., et al. Secondary metabolism in Arabidopsis. In Arabidopsis, E.M. Meyerowitz and C.R. Somerville, eds .Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994. 989~1030
3Debeaujon I, Peeters A. J M, Léon-Kloosterziel K M, et al. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell,2001,(13):853~872
4Shirley B W, Kubasek W L, Storz, G., et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J., 1995,(8):659~671
5Koornneef M. Mutations affecting the testa colour in Arabidopsis. Arabidopsis Inf. Serv., 1990,27:1~4
6Nathalie N, Isabelle Debeaujon, Clarisse Jond, et al. The TRANSPARENT TESTA16 Locus Encodes the ARABIDOPSIS BSISTER MADS Domain Protein and Is Required for Proper Development and Pigmentation of the Seed Coat.The Plant Cell, 2002,(14):2463~2479
7Amanda R, Walker P A. et al. The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40 Repeat Protein. Plant Cell, 1999, (11):1337~1350
8 Johnson C S, Kolevski B, Smith D R. TRANSPARENT TESTA GLABRA2, a Trichome and Seed Coat Development Gene of Arabidopsis, Encodes a WRKY Transcription Factor. The Plant Cell, 2002,14, 1359~1375
9Nesi N, Debeaujon I, Jond C, et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell,2000,12,1863~1878
10 Wisman E, Hartmann U, Sagasser M, et al. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc. Natl. Acad. Sci. USA 1998,95,12432~12437
11 Koornneef M, Luiten W, de Vlaming P, et al. A gene controlling flavonoid 3' hydroxylation in Arabidopsis. Arabidopsis Inf. Serv. 1982,19, 113~115.
12 Peer W A, Brown D E, Brian W, et al. Flavonoid Accumulation Patterns of Transparent Testa Mutants of Arabidopsis. Plant Physiology, 2001,126,536~548
13 Nesi N, Jond C, Debeaujon I, et al. The Arabidopsis TT2 Gene Encodes an R2R3 MYB Domain Protein That Acts as a Key Determinant for Proanthocyanidin Accumulation in Developing Seed The Plant Cell, 2001,13,2099~2114
14 Devic M, Guilleminot J, Debeaujon I, et al. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. The Plant Journal, 1999,19(4):387~402
15 Tanner G J, Kristiansen K N. Synthesis of 3,4-cis-3H leucocyanidin and enzymatic reduction to catechin. Anal. Biochem.,1993,209,274~277
16 Weisshaar B, Jenkins G I. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol.,1998,1,251~257
17 Sagasser M, Lu G H, Hahlbrock K, et al. A. thaliana TRANSPARENT TESTA1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev., 2002,16, 138~149
18 Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci., 2000,(5):199~206
19 Ogata K, Hojo H, Aimoto S, et al. Solution structure of a DNA-binding unit of Myb: A helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc. Natl. Acad. Sci. USA, 1992,89:6428~6432
20 Ptashne M. How eukaryotic transcriptional activators work. Nature, 1988,335:683~689
21 Urao T, Yamaguchi-Shinozaki K, Mitsukawa N, et al. Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Mol. Biol,1996,32:571~576
22 Bate N J, Rothstein S J. An Arabidopsis Myc-like gene (MYC-146) with homology to the anthocyanin regulatory gene Delila (accession no. AF013465) (PGR 97–140). Plant Physiol., 1997,115:315~331
23 Rushton P J, Torres J T, Parniske M, et al. Interaction of elicitor-inducing DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 1996,15:5690~5700.
24 de Pater S, Greco V, Pham K, et al. Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res., 1996,24:4624~4631
25 Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development. Biol. Chem., 1997,378:1079~1101
26 Focks N, Sagasser M, Weisshaar B, et al. Characterization of tt15,a novel transparent testa mutant of Arabidopsis thaliana (L.) Heynh. Planta, 1999,208:352~357
27 Brown M H, Paulsen I T, Skurray R A. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol. Microbiol., 1999,31:393~395
28 Hrazdina G. Compartmentation in aromatic metabolism. In Phenolic Metabolism in Plants, H.A. Stafford and R.K. Ibrahim, eds. New York: Plenum Press, 1992.23
29 Ibrahim R K. Immunolocalization of flavonoid conjugates and their enzymes. In Phenolic Metabolism in Plants, H.A. Stafford and R.K. Ibrahim, eds. New York: Plenum Press,1992.25~61
30 Klein M, Weissenb?ck G, Dufaud A, et al. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J. Biol. Chem., 1996,271:29666~29671
31 Lu Y P, Li Z S, Rea P. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: Isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc. Natl. Acad. Sci. USA, 1997, 94: 8243~8248
32 Saier M. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev., 2000,64:354~411
33 Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J., 2004,37(1):104~14
34 Mol J, Grotewold E, Koes R. How genes paint flowers and seeds. Trends Plant Sci., 1998,3:212~217
35 Brown D E, Rashotte A M, Murphy A S, et al. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis thaliana. Plant Physilolgy, 2001,126:524~535
36 Gale M D, Devos K. Plant Comparaive Genetics after 10 years. Science,1998,282:655~659
Share on Mendeley

Collection(s)

Triticum aestivum L.

Accesses

Citation

Detail

Sections
Recommended

/