气生小球藻附着对3种凋落叶分解过程的影响

蒋钰玲, 钱书蕊, 章晨露, 王钰莹, 王鹏, 陶建平

中国农学通报. 2024, 40(33): 93-101

PDF(1770 KB)
PDF(1770 KB)
中国农学通报 ›› 2024, Vol. 40 ›› Issue (33) : 93-101. DOI: 10.11924/j.issn.1000-6850.casb2024-0347
资源·环境·生态·土壤

气生小球藻附着对3种凋落叶分解过程的影响

作者信息 +

The Influences of Aerial Chlorella Attachment on Decomposition of Three Kinds of Apoptotic Leaves

Author information +
History +

摘要

本研究探究了气生藻类在森林生态系统凋落叶分解过程中所起的作用及内在机理。以雷公鹅耳枥(Carpinus viminea)、小叶青冈(Quercus myrsinifolia)和光亮山矾(Symplocos lucida)凋落叶为研究对象,分别接种2种浓度的气生小球藻进行叶片分解控制试验,探究气生小球藻附着对凋落叶分解过程的影响。结果表明:(1)不同浓度附生小球藻添加对凋落叶质量损失无显著影响,但不同树种凋落叶的质量损失有显著差异,两者间无交互作用;(2)不同树种凋落叶的分解速率对藻浓度处理的反应不同;(3)凋落叶自身性状对其质量损失影响强烈;(4)附生小球藻添加对土壤分解者细菌和真菌丰富度、多样性无显著影响,但不同树种凋落叶对细菌和真菌多样性的影响显著。研究结果表明,微生物分解者的丰富度和多样性主要受控于凋落叶自身性状,而气生藻类附着对分解体系中微生物无显著影响,因而,局域环境中凋落叶的分解主要受到叶片自身性状的影响,气生藻类附着对凋落叶的分解过程无显著影响。

Abstract

To explore the role and internal mechanisms of aerial algae in the decomposition process of forest ecosystem and the effect of aerial Chlorella attachment on the decomposition process of leaf litters, we conducted leaf decomposition control experiments by inoculating leaf litters of Carpinus viminea, Quercus myrsinifolia and Symplocos lucida with two concentrations of aerial Chlorella. The results showed that: (1) the addition of Chlorella at different concentrations had no significant effect on the mass loss of leaf litters. However, there were significant differences in mass loss among the leaf litters of different tree species, with no interaction between them. (2) The decomposition rates of leaf litters from different tree species responded differently to the algal concentration treatment. (3) The intrinsic attributes of the leaf litters strongly influenced mass loss. (4) The addition of attached Chlorella had no significant effect on the abundance and diversity of bacteria and fungi in the soil. However, the type of leaf litters significantly affected the abundance and diversity of bacteria and fungi in the soil. The study indicated that the abundance and diversity of microbial decomposers were primarily controlled by the attributes of the leaf litters themselves, and the attachment of aerial algae had no significant impact on the microorganisms in the decomposition system. Therefore, the decomposition of leaf litters in the local environment is mainly influenced by the leaf's own attributes, and the impact of aerial algae attachment on the decomposition process of leaf litters was not significant.

关键词

附生小球藻 / 凋落叶分解 / 室内试验 / 叶片性状 / 土壤微生物 / 气生藻类 / 微生物丰富度 / 微生物多样性

Key words

epiphytic Chlorella / litter decomposition / laboratory experiment / leaf traits / soil microorganisms / aerial algae / microbial abundance / microbial diversity

引用本文

导出引用
蒋钰玲 , 钱书蕊 , 章晨露 , 王钰莹 , 王鹏 , 陶建平. 气生小球藻附着对3种凋落叶分解过程的影响. 中国农学通报. 2024, 40(33): 93-101 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0347
JIANG Yuling , QIAN Shurui , ZHANG Chenlu , WANG Yuying , WANG Peng , TAO Jianping. The Influences of Aerial Chlorella Attachment on Decomposition of Three Kinds of Apoptotic Leaves. Chinese Agricultural Science Bulletin. 2024, 40(33): 93-101 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0347

参考文献

[1]
林波, 刘庆, 吴彦, 等. 森林凋落物研究进展[J]. 生态学杂志, 2004, 23(1):60-64.
[2]
郭伟, 张健, 黄玉梅, 等. 森林凋落物影响因子研究进展[J]. 安徽农业科学, 2009, 37(4):1544-1546.
[3]
丁胜杰, 徐香茹, 朱菲菲, 等. 不同生境中土壤藻类的分布特征与生理生态学功能研究[J]. 生态环境学报, 2023, 32(10):1873-1888.
土壤藻是一类广泛存在于土壤中的微型生物。近年来,关于土壤藻的研究取得了显著的进展。首先,不同生境(荒漠、耕地、盐碱地、矿山、林地和冻原等)的土壤藻组成和丰度有所差异,这反映了其对特定环境因子的适应能力,但缺乏对多种生境的比较和综合。因此,目前对于不同生境中土壤藻的多样性、功能和适应策略的对比等问题仍然知之甚少。而土壤藻对高温、高盐、干旱和强紫外辐射等非生物因子的响应是当前研究的热点,一些研究已经揭示了土壤藻可以分泌一些营养物质来应对这些胁迫的适应机制,这些分泌物既可以改善土壤环境,还可以促进其他作物生长。文章总结了土壤藻的生理生态功能,例如,固氮作用可以吸收大气中的氮气并提高土壤藻的氮素含量,固碳作用可以通过光合作用吸收大气中的二氧化碳从而增加土壤中的碳含量,泌糖作用可以分泌胞外多糖提高土壤团聚性和吸附有害的重金属物质,溶磷作用可以溶解土壤藻难溶的磷素并将其转化为可供植物直接吸收的磷素。未来,可在不同土壤生境中,筛选出其中的优势藻种,通过富集培养再接种至土壤中,探究它与其他土壤生物群落之间的相互关系,以揭示其多样性、群落结构和适应机制的差异。随着全球气候变化的加剧,土壤藻的研究可以为人们评估和预测土壤生态系统在未来气候变化下的响应和适应能力提供新线索。
[4]
MALTSEV Y, MALTSEVA I. The influence of forest-forming tree species on diversity and spatial distribution of algae in forest litter[J]. Folia oecologica, 2018, 45(2):72-81.
[5]
VITOUSEK P M, TURNER D R, PARTON W J, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawai'i: Patterns, mechanisms, and models[J]. Ecology, 1994, 75(2):418-429.
[6]
CORNWELL W K, CORNELISSEN J H C, AMATANGELO K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecology letters, 2008, 11(10):1065-1071.
Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.
[7]
BRADFORD M A, TORDOFF G M, EGGERS T, et al. Microbiota, fauna, and mesh size interactions in litter decomposition[J]. Oikos, 2002, 99(2):317-323.
[8]
DANGER M, CORNUT J, CHAUVET E, et al. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?[J]. Ecology, 2013, 94(7):1604-1613.
In detritus-based ecosystems, autochthonous primary production contributes very little to the detritus pool. Yet primary producers may still influence the functioning of these ecosystems through complex interactions with decomposers and detritivores. Recent studies have suggested that, in aquatic systems, small amounts of labile carbon (C) (e.g., producer exudates), could increase the mineralization of more recalcitrant organic-matter pools (e.g., leaf litter). This process, called priming effect, should be exacerbated under low-nutrient conditions and may alter the nature of interactions among microbial groups, from competition under low-nutrient conditions to indirect mutualism under high-nutrient conditions. Theoretical models further predict that primary producers may be competitively excluded when allochthonous C sources enter an ecosystem. In this study, the effects of a benthic diatom on aquatic hyphomycetes, bacteria, and leaf litter decomposition were investigated under two nutrient levels in a factorial microcosm experiment simulating detritus-based, headwater stream ecosystems. Contrary to theoretical expectations, diatoms and decomposers were able to coexist under both nutrient conditions. Under low-nutrient conditions, diatoms increased leaf litter decomposition rate by 20% compared to treatments where they were absent. No effect was observed under high-nutrient conditions. The increase in leaf litter mineralization rate induced a positive feedback on diatom densities. We attribute these results to the priming effect of labile C exudates from primary producers. The presence of diatoms in combination with fungal decomposers also promoted decomposer diversity and, under low-nutrient conditions, led to a significant decrease in leaf litter C:P ratio that could improve secondary production. Results from our microcosm experiment suggest new mechanisms by which primary producers may influence organic matter dynamics even in ecosystems where autochthonous primary production is low.
[9]
KUEHN K A, FRANCOEUR S N, FINDLAY R H, et al. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers[J]. Ecology, 2014, 95(3):749-762.
Microbial communities associated with submerged detritus in aquatic ecosystems often comprise a diverse mixture of autotrophic and heterotrophic microbes, including algae, bacteria, protozoa, and fungi. Recent studies have documented increased rates of plant litter mass loss when periphytic algae are present. We conducted laboratory and field experiments to assess potential metabolic interactions between natural autotrophic and heterotrophic microbial communities inhabiting submerged decaying plant litter of Typha angustifolia and Schoenoplectus acutus. In the field, submerged plant litter was either exposed to natural sunlight or placed under experimental canopies that manipulated light availability and growth of periphytic algae. Litter was collected and returned to the laboratory, where algal photosynthesis was manipulated (light/dark incubation), while rates of bacterial and fungal growth and productivity were simultaneously quantified. Bacteria and fungi were rapidly stimulated by exposure to light, thus establishing the potential for algal priming of microbial heterotrophic decay activities. Experimental incubations of decaying litter with 14C- and 13C-bicarbonate established that inorganic C fixed by algal photosynthesis was rapidly transferred to and assimilated by heterotrophic microbial decomposers. Periphytic algal stimulation of microbial heterotrophs, especially fungal decomposers, is an important and largely unrecognized interaction within the detrital microbial landscape, which may transform our current conceptual understanding of microbial secondary production and organic matter decomposition in aquatic ecosystems.
[10]
宋会银, 胡征宇, 刘国祥. 绿藻门小球藻科的分类学研究进展[J]. 生物多样性, 2023, 31(2):199-216.
[11]
钟慧祺, 韩佩, 芦骞, 等. 小球藻液体肥料对3种植物生长促进作用的探究[J]. 生物学杂志, 2022, 39(3):66-71,77.
[12]
李华, 高丽. β-葡萄糖苷酶活性测定方法的研究进展[J]. 食品与生物技术学报, 2007, 26(2):107-114.
[13]
田林双. 木质素降解相关酶类测定标准方法研究[J]. 畜牧与饲料科学, 2009, 30(10):13-15.
[14]
RUIZ-GONZALEZ C, SALAZAR G, LOGARES R, et al. Weak coherence in abundance patterns between bacterial classes and their constituent otus along a regulated river[J]. Frontiers in microbiology, 2015, 6(1):1293.
[15]
WALTERS W, HYDE E R, BERG-LYONS D, et al. Improved bacterial 16s rrna gene (v4 and v4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. Msystems, 2016, 1(1):e00009-15.
[16]
涂利华, 胡红玲, 胡庭兴, 等. 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应[J]. 植物生态学报, 2012, 36(2):99-108.
[17]
APONTE C, GARCIA L V, MARANON T. Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time[J]. Ecosystems, 2012, 15(7):1204-1218.
[18]
王希华, 黄建军, 闫恩荣. 天童国家森林公园常见植物凋落叶分解的研究[J]. 植物生态学报, 2004, 28(4):457-467.
选择天童地区常绿阔叶林及其退化群落常见植物种为对象,着重探讨分解速率和基质营养含量以及比表面积(Specific Leaf Area, SLA)的关系,并试图通过单独分解试验和混合分解试验的比较,从物种、功能群角度探讨凋落叶多样性和分解这一生态系统过程的关系,为深入研究常绿阔叶林常见植物种的营养策略、群落养分循环等奠定基础,也为植被恢复、森林生态系统管理提供理论依据。结果表明:所有凋落叶随时间进程失重率增大,但失重率并不与时间呈线性相关;凋落叶分解后N、P均发生了变化,大多数凋落叶在分解初期N、P均发生了积累,营养元素的释放和富集与凋落叶初始营养状况无明显的相关性。凋落叶的年分解系数与凋落叶中的初始N含量有较高的相关性,而与初始P含量则无显著的相关性;凋落叶的分解速率与成熟叶的面积无相关性,而与其SLA有很强的相关性。通过模型分析,天童地区大多数常见树种凋落叶分解95%需1~4年,平均是2.54年;分解率最高的物种为山鸡椒(Litsea cubeba),其值为6.280,最低的为黄丹木姜子(Litsea elongata),其值为0.558。凋落物混合对分解有很大的影响,虽在初期对分解有阻碍作用,但长期是促进的。若不考虑功能群差异,则可得出多样性的增加有利于分解的结论。功能群数目的增加在凋落物分解前期对分解起促进作用,但这种作用随分解的进展逐渐减小。混合物种的特性往往是决定分解过程的最重要的因素。
[19]
KUNERT N, ZAILAA J. Specific leaf area for five tropical tree species growing in different tree species mixtures in Central Panama[J]. New Forests, 2019, 50(6):873-890.
[20]
黄雅茹, 马迎宾, 苏智, 等. 乌兰布和沙漠绿洲北抗杨家系6个无性系叶片性状研究[J]. 西北林学院学报, 2019, 34(3):86-90,103.
[21]
张悦, 张艺凡, 马怡波, 等. 森林生态系统凋落物分解影响因素研究进展[J]. 环境生态学, 2023, 5(4):45-56.
[22]
徐波, 朱忠福, 李金洋, 等. 九寨沟国家自然保护区4个典型树种叶片凋落物在林下及高山湖泊中的分解及养分释放特征[J]. 植物生态学报, 2016, 40(9):883-892.
叶片凋落物分解对生态系统的养分循环和生产力有着重要意义。该文利用网袋分解法对九寨沟国家自然保护区内黄果冷杉(Abies ernestii)、油松(Pinus tabulaeformis)、红桦(Betula albo-sinensis)和高山柳(Salix cupularis) 4个典型树种叶片凋落物在林下及高山湖泊中的分解及养分释放特征进行了对比研究。结果表明: 1)叶片凋落物分解质量损失规律符合Olson的负指数衰减模型(r > 0.93, p < 0.01), 4个树种叶片在林下完全分解(99%)的时间依次为: 高山柳(6.80 a) <红桦(10.34 a) <黄果冷杉(18.88 a) <油松(27.21 a), 且分别是其在水体中分解的1.48倍、1.55倍、1.80倍和1.65倍。2)分解1年后凋落物质量剩余率(MR)和氮素剩余率(NR)均与叶片初始N含量极显著负相关, 而与叶片初始C:N值极显著正相关。3)不同树种间叶片N和P释放特征差异明显, 且在林下和水体间的释放模式也存在差异; 高山柳叶片凋落物在林下和水体分解过程中N元素从分解初期便开始释放, 而其他树种叶片凋落物N元素释放前存在明显的富集过程; 各树种叶片凋落物P元素释放模式为释放—富集—释放。研究表明: 叶片凋落物分解是一个受其自身性质和外界环境因素共同作用的复杂过程, 而凋落物在高山湖泊中的快速分解将对保护区现有的水体景观产生潜在影响。
[23]
费裕翀, 叶义全, 郑宏, 等. 外源氮素调控C/N比对杉木林凋落叶细菌群落结构的影响[J]. 生态学报, 2021, 41(5):2011-2023.
[24]
SANCHEZ F G. Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality[J]. For ecol manage, 2001, 152(1):85-96.
[25]
张瑞清, 孙振钧, 王冲, 等. 西双版纳热带雨林调落叶分解的生态过程.Ⅲ.酶活性动态[J]. 植物生态学报, 2008, 32(3):622-631.
该文通过野外试验和室内模拟相结合,系统研究了西双版纳热带雨林生态系统混合凋落叶分解过程中的酶活性动态。野外试验采用网袋法(1 mm和100μm网眼)限制土壤动物的出入,室内模拟试验采用灭菌-接种法控制生物组成,从而研究不同生物组成或食物链结构条件下,凋落叶分解过程中的酶活性变化,以及酶活性与分解进程之间的动态响应。研究结果表明,转化酶和淀粉酶在有机残体的最初分解阶段发挥重要作用,参与易分解成分的转化和分解,这些酶与凋落叶分解进程之间存在显著的负相关性,且参与分解的生物组成越简单(缩短食物链),这些酶活性越高,是微生物在分解初期对底物加以利用的关键酶类; Cx酶、β-葡萄糖苷酶、木聚糖酶活性均在分解中期达到高峰,多酚氧化酶在分解后期迅速上升,对凋落叶中、后期木质素的分解起到关键性的作用,这些酶与凋落叶分解进程之间存在显著的正相关性,且参与分解的生物组成越复杂(延长食物链),这些酶活性越高,是微生物在分解后期对底物进一步利用的关键酶类;与C循环有关的酶类都可以作为有机物质分解进程的重要指标,与分解进程之间存在一定的动态响应,有机残体的分解过程实质上是一个酶解过程。
[26]
王淳, 董雪婷, 杜瑞鹏, 等. 华北落叶松与阔叶树种混合凋落叶分解过程中养分释放和酶活性变化[J]. 应用生态学报, 2021, 32(5):1709-1716.
森林凋落物是森林土壤的重要组成部分,凋落物分解在调控森林生态系统养分循环中发挥了关键作用。采用凋落物分解袋法,研究河北塞罕坝地区华北落叶松与白桦,华北落叶松与蒙古栎,华北落叶松、白桦和蒙古栎混合凋落叶及纯华北落叶松凋落叶分解过程中分解速率、养分释放和酶活性的变化。结果表明: 经过近2年的分解,混合凋落叶分解速率均显著高于纯华北落叶松凋落物叶;在所有处理中,华北落叶松与白桦混合凋落叶分解速率最高。在凋落叶分解过程中,不同处理养分含量变化一致,凋落叶N、P含量呈上升趋势,C、K含量和C/N呈下降趋势;相对纯华北落叶松凋落叶,各混合凋落叶分解可以促进凋落叶C、K的释放,但对N、P的释放有一定的抑制作用。在凋落叶分解过程中,不同处理凋落叶过氧化氢酶、脲酶、酸性磷酸酶活性呈上升趋势,蔗糖酶活性呈下降趋势;凋落叶分解速率与凋落叶过氧化氢酶、脲酶、酸性磷酸酶活性呈正相关,与蔗糖酶活性呈负相关。总体来看,华北落叶松和白桦、蒙古栎凋落叶混合可以促进华北落叶松凋落叶的分解,且凋落叶中酶活性动态变化与凋落叶的分解密切相关。
[27]
GRIFFITH M B, PERRY S A, PERRY W B. Leaf litter processing and exoenzyme production on leaves in streams of different pH[J]. Oecologia, 1995, 102(4):460-466.
We examined microbial colonization, exoenzyme activity, and processing of leaves of yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and white oak (Quercus alba) in three streams on the Allegheny Plateau of West Virginia, United States. Leaf packs were placed in streams that varied in their underlying bedrock geology, and therefore in their sensitivity to the high level of acidic precipitation that occurs in this region. The mean pH of the streams was 4.3 in the South Fork of Red Run (SFR), 6.2 in Wilson Hollow Run (WHR), and 7.7 in the North Fork of Hickman Slide Run (HSR). Through time, the patterns of microbial biomass and exoenzyme activity were generally similar among leaf species, but the magnitude of microbial biomass and exoenzyme activity differed among leaf species. Pectinase activity was greatest in HSR, the most alkaline stream, whereas the activity of exocellulase and xylanase was greatest in WHR and SFR, the intermediate and acidic streams. This variation in the activity of different exoenzymes was consistent with published pH optima for these exoenzymes. Variation in processing rates, both among leaf species and among streams, seems to be related to the level of microbial exoenzyme activity on the leaf detritus.
[28]
王凤娟, 李伟庆, 牟志美, 等. Paraconiothyium variable GHJ-4木质素降解酶的酶学性质[J]. 林业科学, 2017, 53(1):94-100.
[29]
董学德. 麻栎-刺槐林凋落物分解过程中土壤微生物群落变化特征及影响因素[D]. 泰安: 山东农业大学, 2022.
[30]
张利利. 微生物对黄土高原残塬沟壑区三种林分凋落物分解和养分归还的影响机制研究[D]. 杨凌: 西北农林科技大学, 2023.
[31]
侯卓男, 张新军, 王瑞红, 等. 不同海拔高寒森林凋落物分解过程中土壤微生物群落的变化[J]. 中国农业大学学报, 2024, 29(2):36-46.
[32]
杨晨, 刘勇, 陈晓, 等. 油松人工林下真菌群落对凋落物分解的影响[J]. 中南林业科技大学学报, 2016, 36(7):41-47.
[33]
LI S, LYU M, DENG C, et al. Input of high-quality litter reduces soil carbon losses due to priming in a subtropical pine forest[J]. Soil biology and biochemistry, 2024, 194:109444.
[34]
BARDGETT R D, SHINE A. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands[J]. Soil biology & biochemistry, 1999, 31(2):317-321.
[35]
HEDIN L O, BROOKSHIRE E N J, MENGE D N L, et al. Nitrogen paradox in tropical forest ecosystems[J]. Annual review of ecology, evolution, and systematics, 2009, 40(1):613-635.

基金

国家级大学生创新创业训练计划资助项目“气生藻类通过凋落叶分解影响土壤养分循环”(202310635095)
PDF(1770 KB)

Accesses

Citation

Detail

段落导航
相关文章

/