
不同添加剂对好氧堆肥中氮素转化的影响
Effects of Different Additives on Nitrogen Transformation in Aerobic Composting
好氧堆肥是畜禽粪便资源化利用的重要手段,氮素的流失不仅造成环境污染还降低了堆肥产品质量,化学添加剂和生物菌剂是解决该问题的主要技术手段。本研究旨在探讨猪粪、蘑菇渣和过磷酸钙通过添加自研复合菌剂和改性生物炭进行好氧堆肥过程中氮素封存的效果及其机制。试验共设置3组处理:T1:猪粪+蘑菇渣+过磷酸钙,T2:猪粪+蘑菇渣+过磷酸钙+0.5%自研复合菌剂,T3:猪粪+蘑菇渣+过磷酸钙+0.5%自研复合菌剂+8%改性生物炭。结果表明:堆肥24 d结束后,3组处理的相关指标均满足有机肥腐熟标准。与T1相比,T2氨气排放量减少31.0%,有机质增加1.36%;T3氨气排放量减少56.0%,有机质增加5.34%。在微生物群落演替过程中,T2和T3的群落丰度均高于T1,且增加了放线菌门(Actinobacteria)、变形菌门(Proteobacteria)及大洋芽孢杆菌属(Oceanicbacillus)等丰度,其中大洋芽孢杆菌属具有较强的固氮作用。0.5%自研复合菌剂与8.0%改性生物炭联用在促进堆肥腐熟、减少氨气挥发、提高保氮能力和改善有机肥品质等方面效果最佳。
Aerobic composting is an important means of livestock and poultry manure resource utilization, the loss of nitrogen not only causes environmental pollution but also reduces the quality of compost products, and chemical additives and biological fungicides are the main technical means to solve the problem. In this study, pig manure, mushroom slag and calcium superphosphate were used as raw materials, and self-developed composite fungicides and modified biochar were added to investigate the effect and mechanism of ammonium nitrogen sequestration in composting, with a view to reducing the loss of nitrogen. Three groups of treatments were set up in the experiment, including pig manure + mushroom slag + calcium superphosphate (T1), pig manure + mushroom slag + calcium superphosphate + 0.5% self-researched composite fungicide (T2), pig manure + mushroom slag + calcium superphosphate + 0.5% self-researched composite fungicide + 8% modified biochar (T3). The results showed that at the end of 24 d of composting, the relevant indexes of the three groups of treatments met the standard of organic fertilizer decomposition. Compared with T1, T2 ammonia emission decreased by 31.0% and organic matter increased by 1.36%; T3 ammonia emission decreased by 56.0% and organic matter increased by 5.34%. During the microbial community succession, the community abundance of T2 and T3 was higher than that of T1, and the abundance of Actinobacteria, Proteobacteria and Oceanicbacillus was increased, among which Oceanicbacillus had strong nitrogen fixation. The combination of 0.5% self-developed composite bacillus and 8.0% modified biochar had the best effect in promoting compost maturation, reducing ammonia volatilization, improving nitrogen retention capacity and improving the quality of organic fertilizer.
好氧堆肥 / 氮素转化 / 自研复合菌剂 / 改性生物炭 / 氮素封存 {{custom_keyword}} /
aerobic composting / nitrogen transformation / self-developed compound microbial agent / modified biochar / nitrogen sequestration {{custom_keyword}} /
表1 堆肥原料的主要理化性质 |
堆肥原料 | 含水率/% | pH | 有机质/% | 全氮/% | 全磷/% | 全钾/% |
---|---|---|---|---|---|---|
猪粪 | 66.94 | 7.17 | 47.48 | 2.80 | 3.05 | 4.58 |
蘑菇渣 | 26.42 | 8.08 | 57.65 | 1.967 | 2.54 | 1.47 |
生物炭 | — | 9.45 | — | 8.79 | 3.38 | 11.69 |
表2 脱硫镁渣的理化性质 |
含水率/% | pH | MgSO3/% | MgSO4/% | Hg/(mg/kg) | As/(mg/kg) | Cd/(mg/kg) | Pb/(mg/kg) | Cr/(mg/kg) | |
---|---|---|---|---|---|---|---|---|---|
脱硫镁渣 | 17.59 | 8.63 | 35.82 | 8.59 | 0.019 | 1.17 | — | 4.76 | 7.08 |
表3 不同处理的物料比 |
不同处理 | 物料比 |
---|---|
T1 | 猪粪+蘑菇渣+过磷酸钙 |
T2 | 猪粪+蘑菇渣+过磷酸钙+0.5%自研复合菌剂 |
T3 | 猪粪+蘑菇渣+过磷酸钙+0.5%自研复合菌剂+8.0%改性 生物炭 |
[1] |
王孝芳, 万金鑫, 韦中, 等. 畜禽粪便堆肥过程中微生物群落演替[J]. 生物技术通报, 2022, 38(5):13-21.
为了满足日常肉蛋奶的需求,畜禽养殖业快速发展,与此同时产生的大量畜禽粪便亟需处理。堆肥作为一种高效、无害化、资源化的处理方式,被广泛应用于畜禽粪便的处理。畜禽粪便堆肥是通过微生物活动,将不稳定的有机物质分解转化合成为稳定的腐殖质的过程。了解微生物群落演替的基本规律,是发展堆肥新方法与理论的重要基础。论文梳理了畜禽粪便堆肥不同阶段中微生物群落结构和功能演替规律,总结了堆肥起始物料的特性(含水量、pH、C/N等)和人为活动(翻堆曝气、菌剂接种)对堆肥微生物群落演替的影响,比较了当前堆肥微生物群落的研究方法。提出了未来畜禽粪便堆肥研究值得重视的科学问题和研究方向,为指导未来的工作提供支持。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李明章, 李彦明, 王珏, 等. 好氧堆肥去除畜禽粪便病原体的研究进展[J]. 农业资源与环境学报, 2023, 40(4):864-872.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
逄玉万. 生物炭与功能微生物及镁渣在猪粪堆肥中除臭效果与机制研究[D]. 武汉: 华南农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
董丽艳, 朱军保, 虎海波. 碳氮比对芒果树剪枝堆肥的影响[J]. 南方农业学报, 2022, 53(10):2963-2970.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
赵彬涵, 孙宪昀, 黄俊, 等. 微生物在有机固废堆肥中的作用与应用[J]. 微生物学通报, 2021, 48(1):223-240.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
徐春钰, 张仕颖, 夏运生, 等. 2种微生物菌剂对蔬菜花卉秸秆高温堆肥过程中氮变化的影响[J]. 中国农学通报, 2016, 32(24):136-140.
为寻求蔬菜花卉秸秆简单、有效的利用方法,减少滇池流域农业面源污染。通过堆肥试验研究了蔬菜花卉秸秆接种微生物菌剂农冠和微元后,在翻堆和不翻堆2种处理方式下,高温堆肥过程中温度、全氮(T-N)、水溶性NH<sub>4</sub><sup></sup>-N和水溶性NO<sub>3</sub><sup>-</sup>-N含量随时间的变化规律。结果表明:不翻堆的3个处理由于缺氧,发酵速率低,短期内不易腐熟。翻堆处理中,纯物料对照样品升温过程缓慢,高温分解阶段持续时间短, T-N损失大,堆肥品质差;添加微生物菌剂农冠后,与纯物料对照相比,提前3天进入高温分解阶段,高温分解持续时间延长4天,T-N含量损失比对照低10.9%,水溶性NH<sub>4</sub><sup></sup>-N比对照降低24.7%,水溶性NO<sub>3</sub><sup>-</sup>-N则比对照增加14.0%;添加微生物菌剂微元后,与纯物料对照相比,提前5天进入高温分解阶段,高温分解持续时间延长6天,T-N含量损失比对照低24.1%,水溶性NH<sub>4</sub><sup></sup>-N比对照降低29.3%,水溶性NO<sub>3</sub><sup>-</sup>-N则比对照增加24.2%。接种微生物菌剂可促进水溶性NH<sub>4</sub><sup></sup>-N向水溶性NO<sub>3</sub><sup>-</sup>-N转化,降低堆肥容重,其中添加微元综合效果更理想。在翻堆条件下接种微生物菌剂微元可加快蔬菜花卉秸秆堆肥化进程,提高堆肥产品品质,且方法简单易行,适合在全流域进行广泛推广。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
刘金灵, 张亚茹, 王宇光, 等. 生物炭对土壤微生物影响的研究进展[J]. 中国农学通报, 2023, 39(26):60-66.
生物炭的施用改变了土壤的理化性质,刺激了土壤微生物的活动,从而影响土壤质量和植物生长。通过研究生物炭对土壤微生物的影响,可以更好地理解生物炭与土壤以及植物之间的相互作用具有重要的意义。然而,生物炭对土壤特性的研究比较多,但对土壤微生物的研究比较少。本文主要从以下几个方面进行相关介绍:(1)生物炭施用对土壤理化性质的影响;(2)生物炭施用对土壤微生物生长的影响;(3)生物炭施用对土壤微生物群落多样性的影响;(4)生物炭施用对土壤微生物酶活性、微生物活性和生态功能的影响。主要论述了生物炭对土壤微生物的研究进展,并对其应用前景进行了预测,为中国农田生态系统的建设和发展奠定了基础。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
唐尙柱, 赵晓海, 斯鑫鑫, 等. 不同镁/磷盐添加剂对蓝藻堆肥的氮素损失控制效果[J]. 农业环境科学学报, 2021, 40(2):428-435.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
杨佳, 王国英, 唐若兰, 等. 生物炭和菌剂对羊粪微好氧堆肥腐熟度和温室气体排放的影响[J]. 农业工程学报, 2022, 38(10):224-231.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
黄晓红, 顾黄辉, 许福涛. 浅析NY525-2012《有机肥料》技术指标标识方法的修订[J]. 上海蔬菜, 2015(5):21-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
时小可, 颉建明, 冯致, 等. 三种微生物菌剂对羊粪高温好氧堆肥的影响[J]. 中国农学通报, 2015, 31(2):45-48.
试验以羊粪为单一原料,添加三种不同类型的微生物菌剂,采用堆体高温好氧堆肥技术对羊粪堆体在腐熟过程中的温度、pH、EC值、种子发芽指数(GI)、全氮含量进行了研究。结果表明:添加微生物菌剂堆肥效果均优于对照(未添加任何菌剂),其中以甘肃省科学院生物所提供的微生物菌剂效果最佳;堆料升温快,堆肥1天后进入高温期,高温持续34天;堆肥结束时,堆料pH 7.56,种子发芽指数(GI)94.32%,EC值最小,全氮含量上升幅度最大,达到了堆肥质量安全标准。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
王海候, 金梅娟, 徐军, 等. 生物质炭添加量对伊乐藻堆肥过程氮素损失的影响[J]. 农业工程学报, 2016, 32(19):234-240.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
朱新梦, 董雯怡, 王洪媛, 等. 牛粪堆肥方式对温室气体和氨气排放的影响[J]. 农业工程学报, 2017, 33(10):258-264.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
薛旭, 谭军利, 麦旭东, 等. 辅料及翻抛工艺对干旱地区污泥堆肥C、N动态变化的影响[J]. 环境工程学报, 2023, 17(3):948-957.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
吴晓东, 邢泽炳, 何远灵, 等. 添加生物炭对猪粪好氧堆肥过程中养分转化的研究[J]. 中国土壤与肥料, 2019(5):141-146.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
李松蓉, 彭璧辉, 徐少奇, 等. 堆肥过程氨气、硫化氢协同减排研究进展[J]. 农业资源与环境学报, 2024, 41(2):431-438.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
曹玉博, 张陆, 王选, 等. 畜禽废弃物堆肥氨气与温室气体协同减排研究[J]. 农业环境科学学报, 2020, 39(4):923-932.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
赵珊, 郭学彬, 杨晓芳, 等. 市政污泥堆肥过程中挥发性硫化物(VSC)和NH3释放规律[J]. 环境工程, 2021, 39(2):82-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
张国言, 董元杰, 孙桂阳, 等. 复合菌剂对兔粪堆肥碳氮转化与损失的影响[J]. 中国农业大学学报, 2022, 27(11):153-165.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
陆晓林, 朱为静, 王经邦, 等. 超高温堆肥促进氮素减损的微生物机制研究进展[J]. 微生物学通报, 2022, 49(7):2805-2818.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
This study investigates changes in microbiological and physicochemical parameters during large-scale, thermophilic composting of a single batch of municipal organic waste. The inter-relationships between the microbial biomass and community structure as well as several physicochemical parameters and estimates of maturation were evaluated.Analyses of signature fatty acids with the phospholipid fatty acid and ester-linked methods showed that the total microbial biomass was highest during the early thermophilic phase. The contribution of signature 10Me fatty acids from Actinobacteria indicated a relatively constant proportion around 10% of the microbial community. However, analyses of the Actinobacteria species composition with a PCR-denaturing gradient gel electrophoresis approach targeting 16S rRNA genes demonstrated clear shifts in the community structure.This study demonstrates that compost quality, particularly maturity, is linked to the composition of the microbial community structure, but further studies in other full-scale systems are needed to validate the generality of these findings.The combination of signature lipid and nucleic acid-based analyses greatly expands the specificity and the scope for assessing the microbial community composition in composts. The results presented in this study give new information on how the development of the compost microbial community is connected to curing and maturation in the later stages of composting, and emphasizes the role of Actinobacteria in this respect.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
贺仕磊, 周倩倩, 弓亚方, 等. 基于麦饭石与添加剂不同联用方式对猪粪堆肥过程的调控[J]. 环境工程学报, 2021, 15(7):2417-2426.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
王友玲, 邱慧珍, 李孟婵, 等. 不同通风方式下牛粪堆肥过程中微生物群落演替及其对环境因子的响应[J]. 环境科学学报, 2023, 43(8):189-201.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
白志高, 罗雅莹, 计思贵, 等. EM菌预处理对不适用鲜烟叶厌氧发酵氮转化的影响[J]. 西南农业学报, 2013, 26(5):2026-2029.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
康军, 张增强, 贾程, 等. 污泥好氧堆肥过程中有机质含量的变化[J]. 西北农林科技大学学报(自然科学版), 2009, 37(6):118-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
辛世杰, 李剑, 王涛, 等. 不同微生物菌剂对猪粪堆肥效果的影响[J]. 北方园艺, 2011(23):141-144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
于静, 谷洁, 王小娟, 等. 微生物菌剂对猪粪堆肥过程中氨气排放和微生物群落的影响[J]. 西北农业学报, 2019, 28(11):1861-1870.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
尹娇, 包立, 陈芙蓉, 等. 碳氮比对叶菜废弃物好氧堆肥效果的影响[J]. 中国土壤与肥料, 2022(12):200-205.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
徐路魏, 王旭东. 生物质炭对蔬菜废弃物堆肥化过程氮素转化的影响[J]. 农业环境科学学报, 2016, 35(6):1160-1166.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
张晟国, 彭彦, 李茹玉, 等. 堆肥发酵功能菌株的筛选及其在鸡粪好氧堆肥中的应用[J]. 华中农业大学学报, 2022, 41(4):20-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
王瑞飞, 孔盈利, 魏艺璇, 等. 菌剂对猪粪-生物炭堆肥理化性质和微生物群落结构的影响[J]. 江苏农业学报, 2023, 39(4):966-977.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
欧蓓, 薛映, 肖可可, 等. 添加秸秆堆肥处理厨余垃圾过程中蛋白类物质转化及微生物群落研究[J]. 华中科技大学学报(自然科学版), 2022, 50(10):83-96.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
曹秀芹, 贾明艳, 潘亚红, 等. 外源菌剂对餐厨垃圾和污泥联合堆肥酶活性及微生物的影响[J]. 环境污染与防治, 2023, 45(4):477-485,491.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
王旭杰, 张文明, 常馨怡, 等. 堆肥添加剂降低碳氮损失的微生物学机制研究[J]. 环境科学学报, 2021, 41(10):4116-4127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
段曼莉, 鄢入泮, 周蓓蓓, 等. 去电子水对牛粪秸秆好氧堆肥进程及细菌群落的影响[J]. 环境科学学报, 2022, 42(2):249-257.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
李楠, 陆勇泽, 朱光灿, 等. 添加过磷酸钙对乡村有机废弃物太阳能辅助好氧堆肥氮素保持的影响[J]. 生态与农村环境学报, 2023, 39(9):1221-1230.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |