
有色稻米及其相关基因研究进展
Colored Rice and Its Related Genes: A Review
为了解有色稻米及其相关基因的研究进展,归纳了有色稻米的功能,分析了Ra、Rc、Rd、OsC1和OsB2基因对有色稻米性状的影响。这些基因通过影响花青素和原花青素的积累,决定了米粒的红、黑、紫等颜色。研究指出了相关稻米颜色基因在水稻育种中的局限性,目前的研究还不够系统,导致无法充分利用这些基因的多样性,也不能证明这些基因在水稻其他性状上的作用。笔者认为可以采用全基因组关联分析和群体遗传学方法,系统分析这些基因在不同水稻品种中的变异和表达模式,为水稻遗传改良提供数据支持,也可以利用遗传学方法和现代生物技术手段探索这些基因在水稻其他性状中的功能,为水稻的多性状改良提供理论依据。
To understand the research progress of colored rice and its related genes, the functions of colored rice were summarized, and the effects of Ra, Rc, Rd, OsC1 and OsB2 genes on the traits of colored rice were analyzed. These genes determine the red, black, and purple colors of rice grains by influencing the accumulation of anthocyanins and proanthocyanidins. In this paper, we point out the limitations of related rice color genes in rice breeding. And the current research is not systematic enough to make full use of the diversity of these genes and prove the role of these genes in other rice traits. It is believed that genome-wide association analysis and population genetics method can be used to systematically analyze the variation and expression patterns of these genes in different rice varieties, and provide data support for rice genetic improvement. We can also use genetic methods and modern biotechnology methods to explore the functions of these genes in other traits of rice, to provide theoretical basis for the improvement of multiple traits of rice.
有色稻米 / 基因 / 形成机制 / 调控机制 / 分子标记 {{custom_keyword}} /
colored rice / gene / formation mechanism / regulation mechanism / molecular marker {{custom_keyword}} /
[1] |
吴娟, 陈小龙. 有色稻米籽粒颜色遗传研究进展[J]. 安徽农学通报, 2021, 27(15):37-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
杨加珍, 曾亚文, 杜娟, 等. 紫黑米种质功能成分综合研究与利用[J]. 生物技术进展, 2015, 5(1):47-53.
紫黑米富含花青素、黄酮、多酚等功能成分,着重介绍了花青素等功能成分的含量差异及其影响因素、功能研究、基于代谢机理与育种及食品加工工艺的功能成分强化研究、功能成分的利用及提取工艺等领域的研究进展。针对国内外紫黑米功能成分综合研究利用进展,提出紫黑米的育种利用、食品保健、医药研发和分子机理研究及其新型功能食品研制与产业化对策,以期为紫黑米相关研究提供参考。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
闵军. 多吃有色稻米益处多[J]. 湖南农业, 2013, 428(8):37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
师江, 李倩, 李维峰, 等. 不同产地紫米营养成分比较及其相关性分析[J]. 热带作物学报, 2022, 43(11):2324-2333.
为评价不同品种紫米淀粉、脂肪、花青素、多酚、氨基酸和矿质元素间的差异,探究不同营养成分之间的关系,选取云南墨江(MJ)、湖南新化(HN)、贵州黎平(GZ)和陕西汉中(SX)4个产地的紫米,并与红米(R)、黑米(B)进行比较。结果显示,不同产地紫米成分含量存在差异,具有不同营养特征。HN紫米的淀粉含量最低(68.13%),脂肪(2.38%)、矿质元素Fe、K、Mg、Mn、Na、P、Zn含量最高,其中Mn(80.37 mg/kg)、Na(10.75 mg/kg)元素显著高于其他产地;MJ和SX紫米花青素(533.03 mg/kg,412.54 mg/kg)、多酚(340.55 mg/100 g,387.91 mg/100 g)含量显著高于其他产地,而GZ紫米花青素(156.55 mg/kg)和多酚(239.23 mg/100 g)显著低于其他产地紫米。SX紫米氨基酸总量(74.37 g/kg)与必需氨基酸(total essential amino acids,ΣEAA,26.09 g/kg)含量最高,与其他紫米差异不显著。紫米成分间相关性分析显示,花青素与多酚呈极显著正相关(0.625),二者分别与Ca呈显著负相关(-0.571,-0.549)。Asp、Gly与Fe、Ca呈显著正相关,大部分元素间呈显著正相关。不同有色稻米间,红米淀粉(74.73%)含量最高,花青素(9.05 mg/kg)、氨基酸总量(55.94 g/kg)、ΣEAA(19.78 g/kg)、Fe(6.51 mg/kg)、Mg(609.41 mg/kg)、P(1746.72 mg/kg)元素含量最低,与紫米和黑米差异显著(P<0.05)。黑米花青素(533.03 mg/kg)、多酚(453.53 mg/100 g)含量显著高于(P<0.05)其他有色稻;黑米和紫米氨基酸含量差异不显著(P>0.05),但显著高于(P<0.05)红米。有色稻ΣEAA与非必需氨基酸总量(total non-essential amino acid,ΣNEA)比例在0.54左右。主成分分析将3种有色稻分为红米、紫黑米两组,前3个主成分可以解释总方差的91%。第一主成分(PC1)贡献率为67.5%,代表矿质元素,说明产地是有色稻米成分组成差异的主要原因。第二主成分(PC2)占总方差的18.2%,主要为总花青素含量、氨基酸等。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice. © 2015 American Society of Plant Biologists. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
蔡光泽, 罗樊, 蔡兴勇, 等. 黑米水提物功能活性成分分析[J]. 西昌学院学报(自然科学版), 2021, 35(2):8-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
赵明超. 黑米花青素生物合成分子机制研究及其营养价值评价[D]. 武汉: 华中农业大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
王璧琮, 潘大伟, 谢锐, 等. 复合酶@ZIF-8的制备及其黑米花青素提取性能[J]. 化工进展, 2024, 43(3):1403-1411.
利用体相原位生长法制备了具有优良催化活性和稳定性的α-淀粉酶&纤维素酶@ZIF-8(A&C@ZIF-8)纳米颗粒,结合溶剂萃取过程,可实现黑米中花青素的有效提取。该纳米颗粒中的α-淀粉酶和纤维素酶能分别通过水解多糖链上的α-1,4糖苷键和β-1,4糖苷键来解离植物细胞壁。同时,由于ZIF-8框架良好的空间限域保护作用,这两种酶展现出良好的高温环境耐受性和有机溶剂耐受性。该纳米颗粒的平均粒径为405nm,呈现多角球形颗粒状,其对两种酶的总负载量为18%(质量分数)。A&C@ZIF-8纳米颗粒中的酶可耐受72℃的高温环境,此时α-淀粉酶和纤维素酶的活性分别比其游离酶高出33.2%和247.3%。此外,当利用A&C@ZIF-8纳米颗粒结合溶剂萃取过程进行花青素协同提取时,其每100g提取量达到了200.39mg/g,比仅利用溶剂萃取时的提取效果提升了26.3%。该工作为创新设计和构建用于植物细胞中活性物质提取的固定化酶复合功能材料提供了新策略。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
郑菲艳, 郑建华, 王洪飞, 等. 中国有色稻米功能性成分遗传与育种研究进展[J]. 福建农业学报, 2021, 36(1):115-123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
徐丽丽, 刘书涵, 李世伟, 等. 黑龙江省部分有色稻种质资源的遗传多样性分析[J]. 种子, 2020, 39(8):34-39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
关玉婷. 改性黑米膳食纤维功能特性、降胆固醇功效及应用研究[D]. 邯郸: 河北工程大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
王彩霞. 有色米的品质特性与种皮颜色性状的分子遗传学研究[D]. 杭州: 浙江大学, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
张家健, 汪雨萍, 刘海平, 等. 黑米稻育种及果皮色素遗传研究进展[J]. 江西农业学报, 2022, 34(5):13-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
邵雅芳, 刘程智, 包劲松. 水稻Ra基因的分子标记开发及应用[J]. 分子植物育种, 2016, 14(9):2405-2411.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
李霞, 杜娟, 杨晓梦, 等. 云南地方有色米种质资源多样性及Rc基因的遗传变异分析[J]. 西南农业学报, 2019, 32(12):2719-2723.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
王武建. 转录因子OsIRO3和OsIRO4在调控水稻铁稳态中的功能及作用机制研究[D]. 南京:南京农业大学,2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
Red rice contains high levels of proanthocyanidins and anthocyanins, which have been recognized as health-promoting nutrients. The red coloration of rice grains is controlled by two complementary genes, Rc and Rd. The RcRd genotype produces red pericarp in wild species Oryza rufipogon, whereas most cultivated rice varieties produce white grains resulted from a 14-bp frame-shift deletion in the seventh exon of the Rc gene. In the present study, we developed a CRISPR/Cas9-mediated method to functionally restore the recessive rc allele through reverting the 14-bp frame-shift deletion to in-frame mutations in which the deletions were in multiples of three bases, and successfully converted three elite white pericarp rice varieties into red ones. Rice seeds from T in-frame Rc lines were measured for proanthocyanidins and anthocyanidins, and high accumulation levels of proanthocyanidins and anthocyanidins were observed in red grains from the mutants. Moreover, there was no significant difference between wild-type and in-frame Rc mutants in major agronomic traits, indicating that restoration of Rc function had no negative effect on important agronomic traits in rice. Given that most white pericarp rice varieties are resulted from the 14-bp deletion in Rc, it is conceivable that our method could be applied to most white pericarp rice varieties and would greatly accelerate the breeding of new red rice varieties with elite agronomic traits. In addition, our study demonstrates an effective approach to restore recessive frame-shift alleles for crop improvement.© 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
Anthocyanins cause purple, brown or red colors in various tissues of rice plants, but the specific determinant factors and regulatory systems for anthocyanin biosynthesis in almost all tissues remain largely unknown. In the present study, we mapped and isolated two complementary genes, OsC1 encoding a R2R3-MYB transcriptional factor and OsDFR encoding a dihydroflavonol 4-reductase, which are responsible for the purple coloration of apiculi and stigmas in indica cultivar Xieqingzao by the map-based cloning strategy. We also identified two tissue-specific pigmentation genes, OsPa for apiculi and OsPs for stigmas, by phylogenetic analysis of all anthocyanin biosynthesis-associated bHLH transcriptional factors in maize and rice, CRISPR/Cas9 knockout and transcriptional expression analysis. The OsC1, OsPa and OsPs proteins are all localized in the nucleus while the OsDFR protein is localized in the nucleus and cytoplasm, and the OsC1 and OsDFR genes are preferentially strongly expressed in both purple-colored tissues while the OsPa and OsPs genes are preferentially strongly expressed in apiculi and stigmas, respectively. OsC1 specifically interacts with OsPa or OsPs to activate OsDFR and other anthocyanin biosynthesis genes, resulting in purple-colored apiculi or stigmas. OsC1 itself does not produce color but can produce brown apiculi when functioning together with OsPa. Loss of function of OsDFR alone leads to brown apiculi and straw-white stigmas. Genotyping and phenotyping of a panel of 176 rice accessions revealed diverse genotypic combinations of OsC1, OsDFR, OsPa and OsPs that enable accurate prediction of their apiculus and stigma pigmentation phenotypes, thus validating the general applicability of the OsC1-OsDFR-OsPa and OsC1-OsDFR-OsPs models to natural populations. Our findings disclosed the biological functions of OsC1, OsPa and OsPs, and shed light on the specific regulatory systems of anthocyanin biosynthesis in apiculi and stigmas, a further step in understanding the regulatory network of anthocyanin biosynthesis in rice.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
郑婕. 水稻叶色性状的全基因组关联分析及叶片花青素合成调控机理的研究[D]. 武汉: 华中农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
Anthocyanin pigmentation provides an excellent system with which to study the regulation of gene expression in higher plants. In this study, OsPR1.1 promoter was isolated and the promoter activity was monitored using a reporter gene OSB2, which encodes a transcription factor for anthocyanin synthesis in rice plants. We introduced PR::OSB2 plasmid into an isogenic Taichung 65, no. 99-962 T-65 CBA B9F5 (T65 CBA), rice line (Oryza sativa L.) and found that the transgenic rice plants exhibited anthocyanin accumulation by the induced expression of OSB2 after chemical treatments with methyl jasmonate (MeJA) and 2,6-dichloroisonicotinic acid (DCINA). The shoots of the PR::OSB2 transgenic rice plants changed color to red after application of the chemicals accompanying with the increased anthocyanin content to approximately 5-fold by MeJA and 2-fold by DCINA, respectively. The anthocyanin accumulation was consistent with the increase of the expression of OSB2 and anthocyanidin synthase (ANS). This color change system could provide a useful and easy way to produce transgenic plants for monitoring of chemicals in the environment.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
何展坤, 崔延春, 徐庆国, 等. 水稻果皮花青素含量的全基因组关联分析[J]. 农业现代化研究, 2023, 44(2):370-380.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
张元野, 尹丽颖, 李荣田, 等. 利用CRISPR/Cas9技术创制Rc基因恢复红稻[J]. 中国水稻科学, 2022, 36(6):572-578.
【目的】将栽培稻品种恢复为米质优、抗逆性强的红稻具有较大的研究价值。利用CRISPR/Cas9基因编辑技术,编辑原花青素转录调节因子Rc基因,恢复红种皮特性,以改良水稻米质,提升抗逆性。【方法】利用CRISPR/Cas9技术,以Rc为靶基因,构建突变载体pYLCRISPR/Cas9-Rc-gRNA,以空育180、上育453为材料,转化获得转基因植株,通过测序手段和表型观察验证成果。【结果】分子水平检测获得Rc突变材料2种,其中KY-1在1414―1417 bp缺失4个碱基,终止子突变为苯丙氨酸;SY-1在1411 bp处缺失1个碱基,终止子突变为天冬氨酸。2种编辑材料均恢复为红米表型,且具有一定耐盐碱能力。【结论】利用CRISPR/Cas9基因编辑技术成功获得恢复红种皮表型的纯合株系,为红米改良提供基础材料。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H (o)). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker-trait associations are validated in segregating populations.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
梅中青, 汤芬芬. 优质红米粳型赤皮稻改良品种——赤峰1号的选育与栽培技术[J]. 农业科技通讯, 2006(5):20-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
Anthocyanin pigments in coloured rice cultivars were isolated and identified using high-performance liquid chromatography techniques. Two black rice cultivars (Asamurasaki, Okunomurasaki) contained three major anthocyanins: cyanidin-3-glucoside, peonidin-3-glucoside and malvidin. Chinakuromai (black) rice additionally contained a fourth anthocyanin, petunidin-3-glucoside. Four red rice cultivars contained only malvidin. The total anthocyanin content varied greatly among black rice cultivars (79.5-473.7 mg/100g), but was lower in red rice (7.9-34.4 mg/100g). Total phenolic content was similar between red (460.32-725.69 mg/100g) and black (417.11-687.24 mg/100g) rice. The oxygen radical absorbing capacity was ranked as follows: red (69.91-130.32 μmol Trolox/g)>black (55.49-64.85 μmol Trolox/g)>green (35.32 μmol Trolox/g)>white (21.81 μmol Trolox/g) rice. The antioxidant capacity resulted mainly from the seed capsule, not the endosperm. The anthocyanin pigments contributed little to the total antioxidant capacity of red (0.03-0.1%) and black (0.5-2.5%) rice cultivars. Hence, the antioxidant capacity is derived mainly from other phenolic compounds.Copyright © 2012 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
赵辉, 张万霞, 柳哲胜, 等. 紧穗野生稻(O. eichingeri A. Peter)控制红色果皮基因的定位[J]. 植物遗传资源学报, 2009, 10(2):201-204.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
张亭亭, 窦兰兰, 王英存, 等. 控制水稻红米性状相关基因分子标记的开发[J]. 上海师范大学学报(自然科学版), 2015, 44(5):485-489.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
康水英. 施氮量对红米杂交稻金农3优3号产量和农艺性状的影响[J]. 福建稻麦科技, 2023, 41(3):17-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
韩为胜, 许开放, 王发文, 等. 红米稻两优5989的选育及应用[J]. 园艺与种苗, 2021, 41(2):72-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
林成豹, 黄显波, 邓则勤, 等. 抗病优质红米杂交稻新品种山两优186的选育与应用[J]. 福建稻麦科技, 2023, 41(3):5-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
管玉圣, 蒋刚, 王楚桃, 等. 高产优质红米杂交水稻新组合晶红优52的选育与应用[J]. 杂交水稻, 2023, 38(6):105-108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
邵雅芳, 徐非非, 唐富福, 等. 水稻花青素合成相关基因的时空表达研究[J]. 核农学报, 2013, 27(1):9-14.
水稻花青素的生物合成受很多因素的影响,最根本的影响因素是结构基因和调控基因的表达水平不同,导致色素积累的差异性。本文通过半定量PCR方法研究一些结构基因和调节基因的时空表达差异性。发现OsPAL, OsCHS和OsCHI为花青素的基本表达基因,在叶片、茎、花期及花后1~2周的种子中均有表达。OsF3H, OsF3’H和OsDFR不在茎中表达,在叶片、花期和花后1~2周内均有表达,且在花后1~2周内,其表达量与时间成正比。OsANS在黑米和紫叶水稻的叶片和花中有少量表达,在花后1~2周内,仅在黑米中表达,且表达量与时间成正比。OsB1和OsB2特异性地在紫叶水稻的叶片中表达,OsC1也特异地在花期时表达。说明水稻不同部位的花青素积累受控于不同的基因,具有一定的时空表达特异性。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |