转基因玉米连续种植对土壤丛枝菌根真菌群落的影响

刘仟龙, 刘瑞华, 李刚, 修伟明, 杨殿林, 刘红梅, 赵建宁

中国农学通报. 2024, 40(29): 65-74

PDF(1552 KB)
PDF(1552 KB)
中国农学通报 ›› 2024, Vol. 40 ›› Issue (29) : 65-74. DOI: 10.11924/j.issn.1000-6850.casb2024-0062
资源·环境·生态·土壤·气象

转基因玉米连续种植对土壤丛枝菌根真菌群落的影响

作者信息 +

Effects of Continuous Planting of Transgenic Maize on Community of Arbuscular Mycorrhizal Fungi in Soil

Author information +
History +

摘要

为评估转基因玉米连续种植对土壤丛枝菌根真菌群落结构的影响,以转基因玉米DBN9936和其受体玉米DBN318为材料,采用PCR-DGGE技术和PLFA技术分析土壤AM真菌群落结构特征。结果表明:在相同的种植年份和地点下,转基因和非转基因玉米的土壤AM真菌群落结构表现出较高的相似性,其香农-威纳指数、Pielou均匀度指数和丰富度均未出现显著性差异,且优势属均为Clomus(球囊霉属)。聚类分析结果显示,同一种植地点下的2种玉米土壤中AM真菌群落的相似度大多在0.60以上,而不同地点的群落相似度均小于0.60;同时,不同种植地点的两种玉米非常清晰的分布在聚类图的上下两侧,说明土壤AM真菌群落结构受种植地点影响较大,而转基因本身对其影响较为微弱。系统发育分析结果表明,不同地点下种植的两种玉米的特有条带在系统发育树上聚类在不同的类群。土壤微生物PLFA含量结果显示,转基因玉米DBN9936的种植对土壤微生物的总PLFA含量均未产生显著影响,各微生物类群的相对丰度差异也较小;而在不同种植地点下两种玉米土壤微生物的总PLFA含量均有显著性差异,且各微生物类群的相对丰度差异较大。综上,转基因玉米DBN9936较之对应的非转基因玉米对土壤AM真菌群落结构和PLFA含量无显著影响,但不同种植地点之间存在差异。

Abstract

To evaluate the effect of continuous planting of transgenic maize on the community structure of soil arbuscular mycorrhizal fungi, transgenic maize DBN9936 and its non-transgenic counterpart were used as the experimental materials, the characteristics of soil arbuscular mycorrhizal (AM) fungal community structure were analyzed using PCR-DGGE and PLFA techniques. The results indicated that there was a high similarity in the soil AM fungal community structure between transgenic and non-transgenic maize in the same planting year and location. There were no significant differences in the Shannon-Wiener index, Pielou evenness index and richness. The dominant genera consistently identified were Glomus. Cluster analysis revealed that the similarity of AM fungal communities in soils from the two maize types at the same planting location was mostly above 0.60, while the similarity between communities from different locations was below 0.60. Additionally, the clustering pattern clearly separated the two maize types from different planting locations on the upper and lower sides of the cluster diagram, indicated that the community structure of soil AM fungi was greatly affected by planting sites, while the influence of the transgenic itself was weak. Phylogenetic analysis also indicated that the specific bands of the two maize species planted in different locations clustered in different groups on the phylogenetic trees. The results of soil microbial PLFA content showed that the planting of transgenic maize DBN9936 had no significant effect on the total soil microbial PLFA content, and the differences in the relative abundance of microbial groups were small. In contrast, significant differences were observed in the total PLFA content of soil microbes between the two maize types planted at different locations, with substantial variations in the relative abundance of microbial groups. In conclusion, compared to non-transgenic maize, transgenic maize DBN9936 had no significant impact on the structure of soil AM fungal communities and PLFA content. However, notable differences were observed among different planting locations.

关键词

转基因玉米 / 丛枝菌根真菌 / PCR-DGGE / PLFA / 群落结构

Key words

transgenic maize / arbuscular mycorrhizal fungi / PCR-DGGE / PLFA / community structure

引用本文

导出引用
刘仟龙 , 刘瑞华 , 李刚 , 修伟明 , 杨殿林 , 刘红梅 , 赵建宁. 转基因玉米连续种植对土壤丛枝菌根真菌群落的影响. 中国农学通报. 2024, 40(29): 65-74 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0062
LIU Qianlong , LIU Ruihua , LI Gang , XIU Weiming , YANG Dianlin , LIU Hongmei , ZHAO Jianning. Effects of Continuous Planting of Transgenic Maize on Community of Arbuscular Mycorrhizal Fungi in Soil. Chinese Agricultural Science Bulletin. 2024, 40(29): 65-74 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0062

0 引言

2019年,全球转基因作物种植面积达到1.904 hm2,已有29个国家种植转基因作物,其中转基因玉米的种植面积已达6090 hm2,是世界第二大转基因作物[1]。随着转基因作物在全球种植面积的增加,其对生态环境的潜在风险也引起了人们的广泛关注[2-4]。目前,人们对转基因环境风险的评估主要停留在非靶标生物及其多样性、基因漂移、靶标生物抗性进化等方面,缺乏对于土壤生态环境影响的相关研究。而转基因作物的外源基因能够通过根际分泌物、作物的花粉和作物残茬等途径进入土壤生态系统,进而可能对土壤生态系统的稳定性和可持续性产生一定的影响[5-9]
目前,评价转基因作物对土壤生态环境的影响已成为土壤生态学重点关注的问题之一。JEPSON等[10]提出转基因作物的释放需要对一些具有特定生态功能的、有代表性的、较为敏感的土壤生物进行评价。ANGLE[11]强调风险评价的重点是土壤微生物,而丛枝菌根(Arbuscular Mycorrhizal,AM)真菌是一种广泛分布的、能够与植物根系形成共生体的一类土壤微生物[12],它们与超过80%的陆地植物(包括玉米、小麦、大豆等主要作物)建立共生关系,并为植物提供矿物质养分[13-15]。AM真菌对土壤环境的变化非常敏感,能够预测土壤质量的变化,可作为评价转基因作物对土壤生态系统影响的指示生物[16]
近些年来,国内外学者就转基因作物对土壤AM真菌群落结构的影响展开了相关研究:COLOMBO等[17]在2种不同灌溉方式下的研究显示,Hahb-4基因在玉米中的表达不影响AM真菌的侵染率;ZENG等[18]通过高通量测序的方法分析了2个Bt玉米品种5422Bt1和5422CBCL以及其同源常规玉米品种5422根系中的AM真菌群落结构,结果表明Bt和非Bt玉米处理根系和根际土壤AM真菌群落均无显著差异;CHEEKE等[19]在美国使用7种不同基因型的Bt玉米和5种对应的非bt亲本玉米杂交种进行了一项田间试验,结果表明Bt玉米栽培可能会对土壤中的AM真菌孢子产生潜在的负面影响;KURAMAE等[20]进行了一项盆栽试验,使用454焦磷酸测序的方法分析了4个不同品种玉米的土壤真菌多样性和群落结构,研究结果表明AM真菌的群落结构不受转基因的影响;STEPHAN等[21]使用4个不同基因型的马铃薯进行了一项盆栽试验,研究结果显示在短期内转基因马铃薯对AM真菌的定植无负面影响。然而,先前的研究大多集中在单一转基因性状,或是没有考虑到种植地点和种植年份。
本研究在东北地区吉林省和黄淮海地区河北省两个具有不同气候条件和土壤类型的试验地,分别种植了转基因玉米DBN9936及其受体玉米DBN318,分析转基因玉米连续种植对土壤AM真菌群落结构的影响,为转基因玉米的环境安全评价提供理论依据,同时为中国转基因玉米的产业化发展提供参考。

1 材料与方法

1.1 试验地概况

试验点位于吉林省四平市伊通满族自治县和河北省唐山市玉田县。吉林基地(43°15′31′′ N,125°20′7′′ E)气候类型属于中温带湿润季风气候,年均降水627.8 mm左右,年均温4.6℃,无霜期为138 d,供试土壤为白浆土。河北基地(39°47′20′′ N,117°43′15′′ E)属于北温带大陆季风气候,年均降水693.2 mm左右,年均温11.3℃,无霜期为193 d,土壤类型为潮土,属于小麦玉米轮作的典型地区。其部分基本理化性质见表1
表1 试验地土壤基本理化性质
试验地 全磷/(g/kg) 全氮/(g/kg) 土壤有机质/(g/kg) pH
吉林 0.52 1.02 9.35 5.16
河北 0.53 0.49 9.35 8.37

1.2 试验设计及土壤样品采集

试验材料为抗虫和耐除草剂双价转基因玉米DBN9936(外源基因为cry1Ab和epsps)及其受体玉米DBN318。所有试验品种均由北京大北农生物技术有限公司提供。
试验设置转基因玉米DBN9936及其受体玉米DBN318 2个处理,每个处理3次重复,小区面积为 10 m×15 m=150 m2,小区随机分布,小区间设置1 m隔离带,并按照当地管理模式进行施肥和害虫管理。试验于2015年开始,河北省样地在试验前采用小麦—玉米(非转基因)轮作的种植模式,吉林省样地长期种植非转基因玉米。分别于2016年(河北省样地9月27日,吉林省样地9月21日)和2017年(河北省样地9月26日,吉林省样地9月21日)在玉米完熟期进行土壤取样。采用Z形取样法在每个小区选取3个采样点,每个采样点选择5株具有代表性的玉米,在距离主茎2 cm处采集0~20 cm的表层土壤,混匀后放入灭菌塑封袋,带回实验室后置于-20℃冰箱保存。

1.3 土壤总DNA的提取与PCR扩增

称取0.35 g土壤样品后采用EZ-10 Spin Soil DNA Extraction kit按操作说明提取总DNA,以提取的总DNA为模板采用巢式PCR (nested PCR)方法针对AM真菌的ITS片段进行扩增,引物序列及反应条件见表2
表2 PCR反应的引物及反应条件
巢式PCR 引物 引物序列(5′-3′) 反应条件
第一步 AML1 ATCAACTTTCGATGGTAGGATAGA 94℃ 3 min;94℃ 30 s,50℃ 30 s,
72℃ 45 s,35个循环;72℃ 7 min
AML2 GAACCCAAACACTTTGGTTTCC
第二步 NS31 GC-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCA CGGGGGGTTGGA 94℃ 3 min;94℃ 30 s,50℃ 30 s,
72℃ 45 s,35个循环;72℃ 7 min
G101 GGGCAA GTCTGGTGCC GCC TGC TTT AAA CAC TCT A
第一轮反应体为2 μL模板DNA,1 μL每种引物和25 μL Premix Ex Taq,加ddH2O至50 μL;第二轮反应体系以2 μL第一轮PCR产物为模板,其余与第一轮相同。
GC夹序列为:5’-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGTTGGAGGGC AAGTCTGGTGCC-3’。

1.4 变性梯度凝胶电泳(DGGE)及条带测序

本研究中DGGE电泳所用的丙烯酰胺凝胶浓度为8%,凝胶变性梯度为25%~50%,电泳条件为:100 V,60℃,16 h。采用SYBRTM Green I (Invitrogen,USA)染液进行染色,并使用Gel Dox XR凝胶成像系统进行扫描拍照。
回收清晰且具有代表性的条带,并使用不带GC夹子的引物进行PCR扩增和测序。采用Chromas 2软件进行序列分析,测序结果在NCBI上进行比对,选择同源性最高的序列作为参照菌株(相似度≥97%),并使用MEGA 6软件构建系统发育树。

1.5 土壤微生物群落结构的测定

采用磷脂脂肪酸(PLFA)法测定土壤微生物群落结构,PLFA的分析和提取参考修正后的Bligh-Dyer法[22]。本研究参考Frostegrd A的方法进行命名[23],PLFA的生物表征参考LIANG等[24]分成各种群组(表3)。
表3 磷脂脂肪酸类群分类
微生物类群 磷脂脂肪酸标记
细菌 i14:0,14:0,i15:0,a15:0,15:0,i16:0,16:0,16:1ω7c,i17:0,a17:0,17:0,cy17:0,18:1ω7,i19:0,a19:0,19:0,cy19:0
革兰氏阳性细菌 i14:0,i15:0,a15:0,i16:0,i17:0,a17:0
革兰氏阴性细菌 16:1ω7c,16:1ω9c,cyc17:0,17:1ω8c,18:1ω7c,cyc19:0
真菌 16:1ω5c,18:1ω9c,18:2ω6c,18:3ω6c
AM真菌 16:1ω5c,18:1ω7
厌氧菌 A17:0,i17:0

1.6 数据分析

采用SPSS 26.0和R-4.3.2对试验数据进行分析。DGGE图谱通过Quantity One4.3.1软件进行条带识别和数字化处理,并根据非加权组算术平均法(UPGMA)进行相似性聚类分析。AM真菌的多样性采用香农-威纳指数(Shannon-Wiener index,H')、均匀度指数(Pielou,J)和丰富度(Richness,S)进行评价[25],其计算公式如式(1)~(2)所示。
H'=-Σ(PilnPi)
(1)
J=H'/lnS
(2)
其中,Pi表示第i条条带占总光密度值的比值;S表示电泳条带的数量及丰富度。
PLFA数据将分析结果重复3次取平均值,试验数据都以平均数±标准误表示。

2 结果与分析

2.1 DGGE指纹图谱和条带测序结果分析

DGGE指纹图谱分析结果显示:在同一种植地点,2016年和2017年转基因与非转基因样品的DGGE条带数量和位置都较为相似(图1);而对不同种植地点的结果分析发现:2016年在河北样地中条带2、3、6为其特有条带,在吉林样地中条带17、20、23、24为其特有条带;在2017年条带15、16、19、20为河北样地中的特有条带,条带5、9、21为在吉林样地中的特有条带。
图1 不同种植地点和年份下转基因和非转基因玉米土壤AM真菌DGGE图谱

图中A-1、A-2、A-3和B-1、B-2、B-3分别代表河北种植的受体玉米DBN318和转基因玉米DBN9936的3次重复;C-1、C-2、C-3和D-1、D-2、D-3分别代表吉林种植的受体玉米DBN318和转基因玉米DBN9936的3次重复。图a表示2016年土壤样品,图b表示2017土壤样品。下同。

Full size|PPT slide

从2016年和2017年样品的DGGE图谱中分别选取了24条具有代表性的条带。2016年的测序结果显示(图1表4),在河北和吉林种植的2种玉米的土壤AM真菌中,均包含有不可培养球囊霉属(Uncultured Glomus)、不可培养根孢囊霉属(Uncultured Rhizophagus)、不可培养原囊霉属(Uncultured Archaeospora)、不可培养近明球囊霉属(Uncultured Claroideoglomu)和Uncultured Paraglomu,且Uncultured Glomus为共同优势属。分析DGGE条带对比结果,可知河北样地的特有条带分别属于Uncultured RhizophagusUncultured GlomusUncultured Glomeraceae,吉林样地的特有条带分别属于Uncultured GlomusUncultured ArchaeosporaUncultured ParaglomusUncultured Claroideoglomu
表4 2016年土壤AM真菌DGGE条带对比结果
条带
编号
GeneBank
登录号
同源性最高的菌株 相似度/%
1 JQ218148.1 Uncultured Glomus clone 100
2 KX809136.1 Uncultured Rhizophagus clone 99
3 KY979384.1 Uncultured Glomus clone 100
6 KM365412.1 Uncultured Glomeraceae clone 100
7 KC579419.1 Uncultured Glomus clone 99
8 KY232438.1 Uncultured Glomus clone 99
9 LN906586.1 Uncultured Archaeospora clone 99
10 KU168035.1 Uncultured Claroideoglomu 100
12 LT856617.1 Uncultured Rhizophagus clone 99
13 LT856616.1 Uncultured Rhizophagus clone 100
14 EU332725.1 Uncultured Paraglomus clone 98
15 GQ140597.1 Uncultured Glomus clone 100
16 KC588997.1 Uncultured Glomus clone 98
17 JN559802.1 Uncultured Glomus clone 98
18 MG835506.1 Uncultured Glomus clone 99
19 KY979290.1 Uncultured Glomus clone 100
20 KM085113.1 Uncultured Archaeospora clone 97
21 KY979289.1 Uncultured Glomus clone 99
22 KY232529.1 Uncultured Glomus clone 99
23 HE613489.1 Uncultured Paraglomus clone 99
24 KU668988.1 Uncultured Claroideoglomu 99
分析2017年DGGE条带对比结果(表5)和指纹图谱(图1)发现,2地种植的2种玉米的土壤AM真菌中的共同优势属与2016年相似,且Uncultured Glomus为共同优势属。在河北样地的特有条带中,条带15属于Uncultured Glomus条带、20属于Uncultured Claroideoglomus、条带16、19均属于Uncultured Glomeromycotina;而在吉林样地的特有条带中,条带5、9、21均属于Uncultured Glomus
表5 2017年土壤AM真菌DGGE条带对比结果
条带
编号
GeneBank
登录号
同源性最高的菌株 相似度/%
1 KY979378.1 Uncultured Glomus clone 100
2 KY232438.1 Uncultured Glomus clone 99
3 KY979384.1 Uncultured Glomus clone 100
4 KX154256.1 Uncultured Rhizophagus clone 100
5 KY173792.1 Uncultured Glomus clone 97
6 KY232420.1 Uncultured Glomus clone 98
7 LN621194.1 Uncultured Claroideoglomus 100
8 MG835539.1 Uncultured Rhizophagus clone 100
9 KU361755.1 Uncultured Glomus clone 99
10 KU668988.1 Uncultured Claroideoglomus 100
11 KY232471.1 Uncultured Glomus clone 100
12 MF567532.1 Uncultured Glomeromycotina clone 99
13 HG425740.1 Uncultured Glomus clone 100
14 KX462871.1 Uncultured Rhizophagus clone 99
15 KF601851.1 Uncultured Glomus clone 100
16 KT238942.1 Uncultured Glomeromycotina clone 100
17 KY979306.1 Uncultured Glomus clone 100
18 KY232617.1 Uncultured Glomus clone 99
19 MF567532.1 Uncultured Glomeromycotina clone 100
20 LT672514.1 Uncultured Claroideoglomus 99
21 KY232529.1 Uncultured Glomus clone 100

2.2 AM真菌的聚类分析及系统发育树分析

通过聚类分析的结果可以看到:在2个年份下,同一种植地点转基因与非转基因玉米的土壤AM真菌的相似度大多都在0.60以上,而不同地点的相似度均小于0.60(图2);同时,我们可以看到,转基因玉米与非转基因玉米之间没有明显的分界线,而不同种植地点的2种玉米非常清晰的分布在聚类图的上下两侧。这说明转基因对土壤AM真菌的群落结构影响较小,而种植地点对其的影响较大,并且两年的情况都是如此。
图2 土壤AM真菌群落结构相似性UPGMA聚类分析

Full size|PPT slide

系统发育分析发现(图3),2016年条带12、13、15、16、19、21聚类形成了第1类群;条带2、3、6、8形成了第2类群;条带1、7、18、22聚类形成了第3类群;条带10、17、24聚类为第4类群;条带9、14、20、23为第5类群。结合指纹图谱(图1)可以得出河北样地的特有条带都属于第2类群,而吉林样地的特有条带都在第3类群和第4类群之中。
图3 土壤AM真菌系统发育树(2016年)

Full size|PPT slide

对于2017年的分析结果显示(图4),条带1、2、3、4、6、8、11的亲缘关系较近,聚集为同一类群;条带13、14、15、17、18的亲缘关系相近,聚类为第2类群;条带5、9、21聚类形成了第3类群;条带7、10、12、16、19、20可以视为第4类群。可以发现河北样地的特有条带都在第2类群和第4类群之中,而吉林样地的特有条带全都属于第3类群(图1)。
图4 土壤AM真菌系统发育树(2017年)

Full size|PPT slide

2.3 土壤AM真菌的多样性分析

AM真菌群落多样性的分析结果表明:在同一种植地点,转基因和非转基因玉米中的土壤中,AM真菌3个多样性指数均无显著性差异(P>0.05),且2年的规律保持一致(表6)。从不同种植地点来看,可以发现在吉林种植的2种玉米土壤中AM真菌的香农-威纳指数(H')和丰富度(S)在2017年均显著高于河北;而在2016年,2个地点种植的玉米土壤中,AM真菌的各项多样性指数无显著差异。因此,可以认为转基因玉米DBN9936的种植对土壤AM真菌群落结构并没有产生显著性差异。此外,不同的种植地点会对土壤中的AM真菌群落结构产生一定的影响,种植年份也是影响AM真菌的群落结构变化的因素之一。
表6 土壤AM真菌DGGE图谱多样性指数
种植年份 种植地点 品种 香农-威纳指数(H') 丰富度(S) 均匀度指数(J)
2016年 河北省 DBN9936 2.94±0.12Aa 21.67±1.53Aa 0.96±0.02Aa
DBN318 2.94±0.12Aa 21.67±1.53Aa 0.96±0.02Aa
吉林省 DBN9936 2.83±0.14Aa 20.67±2.08Aa 0.94±0.02Aa
DBN318 2.83±0.14Aa 20.67±2.08Aa 0.94±0.02Aa
2017年 河北省 DBN9936 3.23±0.02Ab 29.33±0.58Ab 0.95±0.01Aa
DBN318 3.10±0.11Ab 26.33±2.31Ab 0.95±0.01Aa
吉林省 DBN9936 3.33±0.10Aa 31.67±2.08Aa 0.96±0.10Aa
DBN318 3.28±0.11Aa 30.33±2.31Aa 0.96±0.01Aa
注:同一列数据下的英文大写字母表示同一年份同一地点下不同品种间的多重比较,小写字母表示同一品种同一年份下不同地点间的多重比较。字母不同表示处理间某指数差异达显著水平(P<0.05)。下同。

2.4 转基因玉米种植对土壤微生物PLFA含量及组成的影响

土壤微生物PLFA结果显示,在同一年份同一种植地点下,转基因玉米DBN9936与受体玉米DBN318土壤PLFA含量均无显著差异(表7)。在不同的种植地点下,在吉林种植的两种玉米的土壤PLFA含量均显著高于河北,并且两年的规律一致。
表7 转基因玉米对土壤微生物PLFA含量的影响
种植地点 品种 2016年总PLFA含量/(nmol/g) 2017年总PLFA含量/(nmol/g)
河北省 DBN9936 45.19±2.93Ab 45.27±3.02Ab
DBN318 48.13±3.46Ab 44.13±4.01Ab
吉林省 DBN9936 55.59±3.44Aa 63.16±6.42Aa
DBN318 59.42±3.65Aa 55.14±3.75Aa
对土壤各微生物类群PLFA的相对丰度结果分析发现,在同一种植地点,2016年转基因与非转基因玉米的土壤微生物类群含量的相对丰度差异不超过5%,2017年的差异不超过3%;而在不同地点,2016年河北与吉林的土壤微生物类群含量的相对丰度差异最高达14%,2017年的差异最高达9%。可以看出,同一地点转基因与非转基因玉米的土壤微生物的相对丰度差异较小,而不同地点种植的两种玉米的土壤微生物类群相对丰度差异较大,并且2016年与2017年的结果相似(图5)。
图5 土壤微生物类群PLFA含量的相对丰度

Full size|PPT slide

3 结论

综上所述,转基因玉米DBN9936的连续两年种植对土壤AM真菌群落多样性没有产生显著影响,同一年份同一种植地点转基因玉米与其对应受体玉米土壤AM真菌群落结构和总PLFA含量无显著差异;而种植地点是影响土壤AM真菌群落结构的重要因素。

4 讨论

AM真菌可以从植物中获取碳水化合物,并通过额外的自由基菌丝体网络向植物提供磷、氮和其他矿物质营养物质[26-27]。此外,AM真菌还能减少土源性植物病原体入侵对根部造成的伤害,提高寄主植物在逆境条件下平衡水分的能力,在土壤生态系统中非常重要[28-30]。同时其变化也非常敏感,可作为评估转基因植物环境影响的指示微生物[16]
本研究分析了连续种植转基因玉米后土壤中AM真菌群落结构的多样性,结果显示:转基因与非转基因玉米的DGGE指纹图谱在相同种植地点多为共有条带,且土壤AM真菌的优势属均为Uncultured Clomus,这说明转基因玉米DBN9936的种植对土壤AM真菌的群落结构无显著影响,类似的VERBRUGGEN等[31]对转Cry1Ab基因抗虫玉米对AM真菌群落结构的研究也得出一致的结论。而在不同种植地点下,可以看到吉林省试验点和河北省试验点在2年内都有其特有的DGGE条带,系统发育分析显示,吉林省试验点和河北省试验点的特有条带都分属于不同的类群,这说明两个地点的土壤AM真菌有一定程度的差异。
此外,聚类结果显示,在同一年份同一种植地点的转基因玉米DBN9936和受体玉米DBN318的土壤AM真菌相似度大多大于0.60,并且在聚类图中没有很清晰的分界。而不同种植地点下两个玉米的土壤AM真菌相似度都小于0.60,同时我们可以看到在河北试验点种植的两种玉米与吉林试验点种植的两种玉米非常清晰的分布在聚类图的上下两侧,这进一步说明了土壤AM真菌群落结构因转基因玉米DBN9936的种植而受到的影响微小,而种植地点对其影响较大,这与ZENG等[32-33]的研究结果一致。同时,相关研究表明AM真菌在传统品种和转基因作物品种中的定植模式几乎相同,这表明AM真菌的定植基本不受转基因性状的影响[34]。AM真菌DGGE图谱多样性指数显示:在同一种植地点,两个年份的转基因与非转基因玉米之间的香农-威纳指数、均匀度指数和丰富度均未出现显著性差异;而在不同地点种植的2种玉米的土壤AM真菌的香农指数和丰富度在2017年有显著性差异,更进一步的支持了这一结论。
本研究还发现,除2017年吉林样地外,2个年份在同一地点种植转基因玉米DBN9936和受体玉米DBN318中的土壤PLFA含量均无显著性差异,各种微生物的相对丰度的差异也比较微小,最高不超过5%;而不同地点种植的两种玉米的土壤微生物PLFA含量都有显著性差异,且各种微生物的相对丰度的差异也较大,最高达14%。这表明连续两年种植转基因玉米DBN9936没有对土壤微生物生物量及其结构组成产生显著影响,而种植地点的不同则引起两种玉米的土壤微生物群落产生了显著性差异,这可能是因为不同地点的气候条件和土壤类型也不同,崔红娟等[35]的研究结果也发现了这一现象。另外HANNULA等[36]研究同样也表明,种植年份、土壤类型对土壤AM真菌群落的影响较大,而转基因性状对其的影响最小。WANG等[37]近期使用高通量测序研究转基因玉米对土壤细菌和真菌群落的影响的结果也表明,品种不是影响AM真菌群落结构变化的主要因素。

参考文献

[1]
ISAAA. Global status of commercialized biotech/GM crops in 2019 (ISAAA Brief No.55)[R].Ithaca,NY,USA:ISAAA, 2019.
[2]
KUMAR K, GAMBHIR G, DASS A, et al. Genetically modified crops: current status and future prospects[J]. Planta, 2020, 251:91.
[3]
GILBERT N. Case studies: A hard look at GM crops[J]. Nature, 2013, 497:24-26.
[4]
MAO J, SUN X, CHENG J H, et al. A 52-Week safety study in cynomolgus macaques for genetically modified rice expressing Cry1Ab/1Ac protein[J]. Food and chemical toxicology, 2016, 95:1-11.
A 52-week feeding study in cynomolgus macaques was carried out to evaluate the safety of Bt rice Huahui 1 (HH1), a transgenic rice line expressing Cry1Ab/1Ac protein. Monkeys were fed a diet with 20% or 60% HH1 rice, 20% or 60% parental rice (Minghui 63, MH63), normal diet, normal diet spiked with purified recombinant Cry1Ab/1Ac fusion protein or bovine serum albumin (BSA) respectively. During the feeding trail, clinical observations were conducted daily, and multiple parameters, including body weight, body temperature, electrocardiogram, hematology, blood biochemistry, serum metabolome and gut microbiome were examined at regular intervals. Upon sacrifice, the organs were weighted, and the macroscopic, microscopic and electron microscopic examinations were performed. The results show no adverse or toxic effects of Bt rice HH1 or Cry1Ab/1Ac fusion protein on monkeys. Therefore, the present 52-week primate feeding study suggests that the transgenic rice containing Cry 1Ab/1Ac is equivalent to its parental rice line MH63. Copyright © 2016 Elsevier Ltd. All rights reserved.
[5]
SAXENA D, FLORES S, STOTZKY G. Insecticidal toxin in root exudates from Bt corn[J]. Nature, 1999, 402:480.
[6]
ZWAHLEN C, HILBECK A, GUGERLI P, et al. Degradation of the Cry1Ab Protein within transgenic bacillus thuringiensis corn tissue in the field[J]. Molecular ecology, 2003, 12:765-775.
Large quantities of Bacillus thuringiensis (Bt) corn plant residue are left in the field after harvest, which may have implications for the soil ecosystem. Potential impacts on soil organisms will also depend on the persistence of the Bt toxin in plant residues. Therefore, it is important to know how long the toxin persists in plant residues. In two field studies in the temperate corn-growing region of Switzerland we investigated degradation of the Cry1Ab toxin in transgenic Bt corn leaves during autumn, winter and spring using an enzyme-linked immunosorbent assay (ELISA). In the first field trial, representing a tillage system, no degradation of the Cry1Ab toxin was observed during the first month. During the second month, Cry1Ab toxin concentrations decreased to approximately 20% of their initial values. During winter, there was no further degradation. When temperatures again increased in spring, the toxin continued to degrade slowly, but could still be detected in June. In the second field trial, representing a no-tillage system, Cry1Ab toxin concentrations decreased without initial delay as for soil-incorporated Bt plants, to 38% of the initial concentration during the first 40 days. They then continued to decrease until the end of the trial after 200 days in June, when 0.3% of the initial amount of Cry1Ab toxin was detected. Our results suggest that extended pre- and post-commercial monitoring are necessary to assess the long-term impact of Bt toxin in transgenic plant residues on soil organisms.
[7]
LOSEY J E, RAYOR L S, CARTER M E. Transgenic pollen harms monarch larvae[J]. Nature, 1999, 399:214.
[8]
ICOZ I, STOTZKY G. Fate and effects of insectresistant Bt crops in soil ecosystems[J]. Soil biology and biochemisty, 2008, 40:559-586.
[9]
LIU J, LIANG Y S, HU T. Environmental fate of Bt proteins in soil: transport, adorption/ desorption and degradation[J]. Ecotoxicology and environmental Safety, 2021, 226:112805.
[10]
JEPSON P C, CROFT B A, PRATT G E. Test systems to determine the ecological risks posed by toxin release from bacillus thuringiensis genes in crop plants[J]. Molecular ecology, 1994, 3:81-89.
[11]
ANGLE J S. Release of transgenic plants: biodiversity and population-level considerations[J]. Molecular ecology, 1994, 3:45-50.
[12]
SMITH S E, READ D J. Mycorrhizal symbiosis[M]. New York: Academic press, 2008:5-13.
[13]
SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales[J]. Annual review of plant biology, 2011, 62:227-250.
Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.
[14]
WAGG C, JANSA J, SCHMID B, et al. Belowground biodiversity effects of plant symbionts support aboveground productivity[J]. Ecology letter, 2010, 14:1001-1009.
[15]
HODGEA, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413:297-299.
[16]
梁晋刚, 焦悦, 刘鹏程, 等. 丛枝菌根真菌作为指示性物种评估转基因作物对土壤微生物影响的研究概述[J]. 浙江农业学报, 2018, 30(7): 1267-1272.
转基因作物与土壤生态系统环境要素紧密相关。土壤微生物作为土壤生态系统的一个重要组成部分,转基因作物大面积种植是否会给土壤微生物带来影响已成为其生态风险评价中不可忽视的一个方面。土壤中的微生物种类繁多,因此在研究时有必要选取一些具有代表性的微生物进行分析。丛枝菌根真菌作为一类重要的土壤环境指示微生物,在改善土壤质量与健康状况、提高生物多样性、促进植物生长等方面发挥着不可替代的作用。文章就主要转基因作物对丛枝菌根真菌的影响和作用机制进行综述,认为可将丛枝菌根真菌作为评价转基因作物对土壤生态系统影响的指示生物。
[17]
COLOMBO R P, IBARRA J G, BIDONDO L F, et al. Arbuscular mycorrhizal fungal association in genetically modified drought-tolerant corn[J]. Journal of environmental quality, 2017, 46(1):227-231.
The commercial use of genetically modified (GM) plants has significantly increased worldwide. The interactions between GM plants and arbuscular mycorrhizal (AM) fungi are of considerable importance given the agricultural and ecological role of AM and the lack of knowledge regarding potential effects of drought-tolerant GM corn ( L.) on AM fungal symbiosis. This work studied AM fungal colonization in five corn lines growing under two different irrigation regimes (30 and 100% of soil field capacity [SFC]). Four of the lines were GM corn, and two of these were drought tolerant. The experiment was conducted for 60 d in a growth chamber under constant irrigation, after which mycorrhization, corn biomass, and days to plant senescence (DTS) were evaluated. Arbuscular mycorrhizal fungal species of the order were predominant in the soil inocula. At the end of the experiment, all plants showed AM colonization. Mycorrhization was higher at 30% SFC than at 100% SFC. Within the same corn line, the AM fungi produced more vesicles in plant roots under drought stress. Among treatments, DTS varied significantly, and drought-tolerant GM corn lines survived longer than the wild-type corn when maintained at 100% SFC. Corn biomass did not vary among treatments, and no correlations were found between DTS or biomass and mycorrhization. We conclude that overexpression of the gene in corn plants under the experimental conditions of this study did not affect AM fungal infectivity and improved the tolerance of the corn to drought stress.Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
[18]
ZENG H L, ZHONG W, TAN F X, et al. The influence of Bt maize cultivation on communities of arbuscular mycorrhizal fungi revealed by MiSeq sequencing[J]. Frontiers and microbiology, 2019, 9:3275.
[19]
CHEEKE T E, HAYLEY D, ROSENSTIEL T N, et al. Effect of bacillus thuringiensis (Bt) maize cultivation history on arbuscular mycorrhizal fungal colonization, spore abundance and diversity, and plant growth[J]. Agriculture, ecosystems and environment, 2014, 195: 29-35.
[20]
KURAMAE E E, VERBRUGGEN E, HILLEKENS R, et al. tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing[J]. Plos one, 2013, 8(7):e69973.
[21]
STEPHAN B I, COLOMBO R P, SILVANI V A, et al. Short-term effects of genetically modified potato on arbuscular mycorrhizal fungal communities[J]. Journal of soil science and plant nutrition, 2019, 19:352-356.
[22]
BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian journal of biochemistry and physiology, 1959, 37(8):911-917.
[23]
FROSTEGARD A, BAATH E, TUNLID A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipidfatty acid analysis[J]. Soil biology and biochemistry, 1993, 25(6):723-730.
[24]
LIANG CHAO, KAO-KNIFFIN J, SANFORD G R, et al. Microorganisms and their residues under restored perennial grassland communities of varying diversity[J]. Soil biology and biochemistry, 2016, 103:192-200.
[25]
郭静, 罗培宇, 杨劲峰, 等. 长期施肥对棕壤丛枝菌根真菌群落结构及其侵染的影响[J]. 中国农业科学, 2018, 51(24):4677-4689.
目的 丛枝菌根(Arbuscular mycorrhizal, AM)真菌有改善根际土壤环境、促进植物对养分的吸收、增强植物抗逆性和增加农作物产量等重要作用。本研究旨在探明长期施肥条件下玉米-大豆轮作棕壤丛枝菌根真菌群落结构、对玉米根系侵染的变化及其影响因素。方法 以沈阳农业大学棕壤肥料长期定位试验(38年)耕层(0—20 cm)土壤为材料,于2016年6月选取其中6个施肥处理:(1)不施肥处理(CK);(2)单施化学氮肥(N);(3)施用化学氮磷肥(NP);(4)施用化学氮磷钾肥(NPK);(5)单施有机肥(M);(6)有机肥和化学氮磷肥配施(MNP),采用PCR-DGGE、克隆测序及台盼蓝染色法,分析土壤和玉米根系定殖的AM真菌群落结构及侵染率,并结合环境因素进行冗余分析和典型对应分析。结果 施用有机肥处理土壤的碱解氮(AHN)、速效磷(AP)、速效钾(AK)、铵态氮(NH4 +-N)、硝态氮(NO3 --N)和可溶性有机碳(DOC)含量显著高于单施化肥和不施肥处理,且趋势为:有机肥处理>化肥处理>不施肥处理;与不施肥处理相比,单施化肥处理显著降低了土壤pH值,而施用有机肥处理显著提高了土壤pH值。通过PCR-DGGE及割胶测序,从土壤中得到AM真菌条带22条,根系AM真菌条带仅9条,共分离出13个OTU,从土壤样品中分离的AM真菌种群主要为球囊霉菌和巨孢囊霉属,而侵染玉米根系的AM真菌只有球囊霉菌。聚类分析表明长期不同施肥将棕壤中AM真菌分为了三大类群,分别为单施氮肥处理、施用有机肥处理和其他处理;根系AM真菌分为三大类群,第一类群NPK处理、第二类群为M处理和NP处理、第三类群为其他施肥处理。施用有机肥处理AM真菌的孢子密度显著高于单施化肥和不施肥处理,趋势为:有机肥处理﹥化肥处理﹥不施肥处理。各施肥处理AM真菌侵染率趋势为:NPK处理>施用有机肥处理>其他施肥处理。冗余分析结果表明棕壤AM真菌多样性与土壤理化性质无相关性,而孢子密度与土壤AHN、NH4 +-N、AP、AK、DOC及土壤含水量呈显著正相关;侵染率与土壤NO3 --N呈显著正相关;侵染率与孢子密度之间呈显著正相关;AM真菌的多样性与孢子密度和侵染率之间没有相关性。典型对应分析表明AHN、AK、DOC、 NH4 +-N 对AM真菌的群落组成影响显著。 结论 长期施肥通过改变土壤理化性质,从而对棕壤AM真菌的群落结构产生了显著影响,进而对AM真菌的侵染产生影响。
[26]
WANG S S, CHEN A Q, XIE K, et al. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117:16649-59.
Low availability of nitrogen (N) is often a major limiting factor to crop yield in most nutrient-poor soils. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most land plants that enhance plant nutrient uptake, particularly of phosphate. A growing number of reports point to the substantially increased N accumulation in many mycorrhizal plants; however, the contribution of AM symbiosis to plant N nutrition and the mechanisms underlying the AM-mediated N acquisition are still in the early stages of being understood. Here, we report that inoculation with AM fungus remarkably promoted rice () growth and N acquisition, and about 42% of the overall N acquired by rice roots could be delivered via the symbiotic route under N-NO supply condition. Mycorrhizal colonization strongly induced expression of the putative nitrate transporter gene in rice roots, and its orthologs in and in OsNPF4.5 is exclusively expressed in the cells containing arbuscules and displayed a low-affinity NO transport activity when expressed in oocytes. Moreover, knockout of resulted in a 45% decrease in symbiotic N uptake and a significant reduction in arbuscule incidence when NO was supplied as an N source. Based on our results, we propose that the NPF4.5 plays a key role in mycorrhizal NO acquisition, a symbiotic N uptake route that might be highly conserved in gramineous species.Copyright © 2020 the Author(s). Published by PNAS.
[27]
LIANG M X, LIU X B, ETIENNE R S, et al. Arbuscular mycorrhizal fungi counteract the janzen-connell effect of soil pathogens[J]. Ecology, 2015, 96(2):562-574.
Soilborne pathogens can contribute to diversity maintenance in tree communities through the Janzen-Connell effect, whereby the pathogenic reduction of seedling performance attenuates with distance from conspecifics. By contrast, arbuscular mycorrhizal fungi (AMF) have been reported to promote seedling performance; however, it is unknown whether this is also distance dependent. Here, we investigate the distance dependence of seedling performance in the presence of both pathogens and AMF. In a subtropical forest in south China, we conducted a four-year field census of four species with relatively large phylogenetic distances and found no distance-dependent mortality for newly germinated seedlings. By experimentally separating the effects of AMF and pathogens on seedling performance of six subtropical tree species in a shade house, we found that soil pathogens significantly inhibited seedling survival and growth while AMF largely promoted seedling growth, and these effects were host specific and declined with increasing conspecific distance. Together, our field and experimental results suggest that AMF can neutralize the negative effect of pathogens and that the Janzen-Connell effect may play a less prominent role in explaining diversity of nondominant tree species than previously thought.
[28]
POWELL J R, RILLIG M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem Function[J]. New phytologist, 2018, 220:1059-107.
Contents Summary 1059 I. Introduction: pathways of influence and pervasiveness of effects 1060 II. AM fungal richness effects on ecosystem functions 1062 III. Other dimensions of biodiversity 1062 IV. Back to basics - primary axes of niche differentiation by AM fungi 1066 V. Functional diversity of AM fungi - a role for biological stoichiometry? 1067 VI. Past, novel and future ecosystems 1068 VII. Opportunities and the way forward 1071 Acknowledgements 1072 References 1072 SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
[29]
BOYER L R, BRAIN P, XU X M, et al. Inoculation of drought stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency[J]. Mycorrhiza, 2015, 25:215-227.
[30]
ZHANG Z F, ZHANG J C, XU G P, et al. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of zenia insignis seedlings under drought stress[J]. New forests, 2018, 49:593-604.
[31]
VERBRUGGEN E, KURAMAE E E, HILLEKENS R, et al. Testing potential effects of maize expressing the bacillus thuringiensis Cry1Ab endotoxin (Bt maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting[J]. Applied and environmental microbiology, 2012, 78(20):7384-92.
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.
[32]
ZENG H L, TAN F X, SHU Y H, et al. The Cry1Ab protein has minor effects on the arbuscular mycorrhizal fungal communities after five seasons of continuous Bt maize cultivation[J]. PLoS One, 2015, 10(12):e0146041.
[33]
ZENG H L, TAN F X, ZHANG Y Y, et al. Effects of cultivation and return of bacillus thuringiensis (Bt) maize on the diversity of the arbuscular mycorrhizal community in soils and roots of subsequently cultivated conventional maize[J]. Soil biology and biochemistry, 2014, 75:254-263.
[34]
KNOX O, NEHL D, MOR T, et al. Genetically modified cotton has no effect on arbuscular mycorrhizal colonisation of roots[J]. Field crops research, 2008, 109:57-60.
[35]
崔红娟, 束长龙, 宋福平, 等. 转cry1ah基因玉米对根际土壤微生物群落结构的影响[J]. 东北农业大学学报, 2011, 42(7):30-38.
[36]
HANNULA SE, DE BOER W, VAN VEEN J. A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-Trait have minor effects[J]. Plos one, 2012, 7(4):e33819.
[37]
WANG Y X, ZHANG M J, LI S Y, et al. Effects of insect-resistant Maize HGK60 on community diversity of bacteria and fungi in rhizosphere soil[J]. Plants(Basel), 2022, 11(21):2824.

基金

“国家转基因重大专项”(2016ZX08012005-005)
PDF(1552 KB)

文章所在专题

玉米

35

Accesses

0

Citation

Detail

段落导航
相关文章

/