
优质蛋白玉米‘荃玉9号’主要营养品质性状的QTL定位
李燕, 梁增浩, 杨荣志, 刘志涛, 谭君, 邓路长, 陈洁, 杨麟, 何文铸, 朱永卉, 唐海涛
中国农学通报. 2024, 40(23): 16-21
优质蛋白玉米‘荃玉9号’主要营养品质性状的QTL定位
The Quality Protein Maize ‘Quanyu No.9’: QTL Mapping of Main Nutritional Quality Traits
油分、蛋白质和淀粉是玉米籽粒的主要营养成分,同时也是玉米重要的品质性状。为探索更多玉米品质相关的QTL,本研究以优质蛋白玉米‘荃玉9号’构建的F2:3群体为材料,通过方差分析和QTL定位方法,对玉米籽粒品质性状(包括油分、蛋白质和淀粉含量)进行了遗传分析。在新都和简阳2地共检测到24个品质性状QTL,其中仅与油分含量、蛋白质含量和淀粉含量相关的QTL分别为9、9和2个,与多个品质性状相关的QTL为4个,QTL在10条染色体上均有分布,单个QTL可解释的表型贡献率为1.92%~34.43%。染色体上Bin7.01 (6399330~8305989)的QTL在2个环境同时被检测到,可以解释12.68%~18.13%的表型变异且有加性效应,是控制玉米油分含量的主效QTL。本研究为玉米品质改良的分子辅助育种工作提供了基础数据资料,为后续的育种实践提供了有力支撑。
Oil, protein and starch are the main nutritional components of maize kernels, and they are also important quality traits of maize. In order to explore more QTLs related to maize quality, the F2:3 population constructed by quality protein maize 'Quanyu No.9' was used as the material to measure the quality traits in Xindu and Jianyang. QTL analysis was performed using ICIM mapping4.1 software. In this study, a total of 24 QTLs for quality traits were detected in the two locations, of which 9, 9 and 2 QTLs were only associated with oil content, protein content and starch content, respectively, and 4 QTLs were associated with multiple quality traits. These QTLs were distributed on 10 chromosomes, and the phenotypic contribution rate explained by a single QTL was 1.92%-34.43%. The QTL located in Bin7.01 (6399330-8305989) on the chromosome was detectable in both environments, explaining 12.68%-18.13% of phenotypic variation with additive effects. It is the major QTL controlling oil content in corn. This study provides basic data for molecular assisted breeding of maize quality improvement and provides strong support for subsequent breeding practice.
玉米 / 籽粒品质 / 品质性状 / 油分 / 油分含量 / 蛋白质 / 蛋白质含量 / 淀粉 / 淀粉含量 / QTL定位 / 遗传分析 / 主效QTL {{custom_keyword}} /
corn / grain quality / quality traits / oil / oil content / protein / protein content / starch / starch content / QTL mapping / genetic analysis / major QTL {{custom_keyword}} /
表1 F2:3群体籽粒品质性状 |
性状 | 地点 | 变异范围 | 变异系数 | 峰度 | 偏度 |
---|---|---|---|---|---|
油分 | 新都 | 2.55~5.20 | 0.49 | 0.46 | 0.46 |
简阳 | 2.90~6.00 | 0.53 | 0.54 | 0.68 | |
蛋白质 | 新都 | 9.05~15.60 | 1.11 | 0.64 | -0.57 |
简阳 | 7.95~13.15 | 0.99 | -0.35 | -0.35 | |
淀粉 | 新都 | 68.45~72.10 | 0.64 | 0.11 | -0.09 |
简阳 | 69.05~73.15 | 0.71 | 0.07 | -0.25 |
表2 F2:3群体籽粒品质性状方差分析(F值) |
性状 | 地点 | 基因型 | 地点×基因型 |
---|---|---|---|
油分 | 237.38** | 7.58** | 1.05 |
蛋白质 | 1771.28** | 7.48** | 1.37** |
淀粉 | 245.28** | 3.16** | 1.18 |
注:**表示极显著差异(P<0.01)。下表同。 |
表3 新都和简阳两环境下F2:3群体玉米品质性状的相关性分析 |
性状 | 油分 | 蛋白质 | 淀粉 |
---|---|---|---|
油分 | 1.00 | -.213** | -0.05 |
蛋白质 | -0.221** | 1.00 | 0.04 |
淀粉 | -0.149* | 0.159** | 1.00 |
注:对角(相关系数为1)以上为新都地点相关系数,对角以下为简阳地点相关系数。 |
表4 玉米籽粒品质性状QTL定位 |
序号 | 染色体 | 起始/bp | 终止/bp | Bin | 最大LOD | 性状 | 表型贡 献率/% | 加性效 应值 | 显性效 应值 | 地点 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
油分 | 蛋白质 | 淀粉 | ||||||||||
1 | 1 | 2,260,926 | 2,930,873 | 1.01 | 5.57 | √ | 1.98 | -0.13 | -0.04 | 简阳 | ||
1 | 2,260,926 | 2,930,873 | 1.01 | 3.92 | √ | 3.58 | -0.11 | 1.53 | 简阳 | |||
2 | 1 | 14,847,071 | 14,853,885 | 1.02 | 19.87 | √ | 7.91 | 0.28 | -0.02 | 简阳 | ||
3 | 1 | 20,158,365 | 20,247,650 | 1.02 | 31 | √ | 13.45 | -0.37 | -0.03 | 简阳 | ||
4 | 1 | 25,183,885 | 25,740,124 | 1.02 | 9.22 | √ | 8.87 | -0.19 | -0.15 | 新都 | ||
5 | 1 | 27,179,745 | 28,026,587 | 1.02 | 9.03 | √ | 12.98 | 0.33 | 0.13 | 新都 | ||
6 | 2 | 210,304,227 | 210,314,184 | 2.08 | 6.58 | √ | 2.42 | 0.15 | 0.02 | 简阳 | ||
7 | 3 | 5,353,533 | 5,439,609 | 3.02 | 4.42 | √ | 2.56 | 0.24 | -0.01 | 简阳 | ||
8 | 3 | 9,116,195 | 9,116,562 | 3.03 | 7.27 | √ | 4.41 | 0.34 | -0.16 | 新都 | ||
9 | 3 | 174,507,451 | 175,199,096 | 3.06 | 8.95 | √ | 8.82 | -0.22 | -0.03 | 新都 | ||
3 | 174,507,451 | 175,199,096 | 3.06 | 10.68 | √ | 4.11 | -0.19 | -0.01 | 简阳 | |||
10 | 4 | 185,864,024 | 185,913,217 | 4.08 | 5.13 | √ | 2.96 | 0.24 | 0.07 | 简阳 | ||
11 | 5 | 184,103,019 | 184,161,076 | 5.05 | 5.82 | √ | 5.55 | 0.16 | 0.02 | 新都 | ||
5 | 184,103,019 | 184,161,076 | 5.05 | 11.74 | √ | 4.34 | 0.19 | -0.03 | 简阳 | |||
12 | 5 | 198,006,790 | 198,535,295 | 5.06 | 4.63 | √ | 2.68 | -0.23 | -0.05 | 简阳 | ||
13 | 5 | 200,996,824 | 201,663,108 | 5.06 | 6.41 | √ | 3.94 | -0.32 | -0.13 | 新都 | ||
14 | 6 | 111,070,723 | 111,188,820 | 6.04 | 5.78 | √ | 3.53 | 0.32 | 0.02 | 新都 | ||
15 | 6 | 151,207,737 | 151,835,429 | 6.05 | 6.35 | √ | 2.31 | 0.02 | 0.2 | 简阳 | ||
16 | 6 | 165,084,573 | 165,353,842 | 6.07 | 4.52 | √ | 2.59 | -0.23 | -0.06 | 简阳 | ||
17 | 6 | 167,367,594 | 169,267,083 | 6.08 | 6.68 | √ | 6.13 | 1.5 | 0.63 | 简阳 | ||
18 | 7 | 5,200,541 | 5,974,400 | 7.01 | 6.06 | √ | 2.17 | 0.02 | -0.19 | 简阳 | ||
19 | 7 | 6,399,330 | 8,305,989 | 7.01 | 12.89 | √ | 12.68 | 0.26 | -0.12 | 新都 | ||
7 | 6,399,330 | 8,305,989 | 7.01 | 8.74 | √ | 5.4 | -0.05 | 0.55 | 新都 | |||
7 | 6,399,330 | 8,305,989 | 7.01 | 40.15 | √ | 18.13 | 0.42 | -0.02 | 简阳 | |||
7 | 6,399,330 | 8,305,989 | 7.01 | 36.44 | √ | 25.88 | -0.76 | 0.05 | 简阳 | |||
20 | 7 | 9,858,385 | 11,047,930 | 7.01 | 43.84 | √ | 34.43 | -1.03 | 0.05 | 新都 | ||
7 | 9,858,385 | 11,047,930 | 7.01 | 6.37 | √ | 2.33 | 0.01 | -0.2 | 简阳 | |||
7 | 9,858,385 | 11,047,930 | 7.01 | 14.58 | √ | 8.98 | -0.02 | 0.59 | 简阳 | |||
7 | 9,858,385 | 11,047,930 | 7.01 | 5.2 | √ | 4.75 | 0.01 | 1.77 | 简阳 | |||
21 | 7 | 143,048,348 | 143,637,703 | 7.03 | 5.8 | √ | 3.34 | -0.26 | -0.08 | 简阳 | ||
7 | 143,048,348 | 143,637,703 | 7.03 | 4.04 | √ | 3.63 | -0.03 | -1.55 | 简阳 | |||
22 | 8 | 60,800,166 | 60,800,395 | 8.03 | 5.14 | √ | 2.92 | -0.22 | -0.13 | 简阳 | ||
23 | 9 | 5,242,621 | 5,258,173 | 9.01 | 5.43 | √ | 1.92 | -0.13 | 0.01 | 简阳 | ||
24 | 10 | 10,832,099 | 12,533,958 | 10.2 | 7.66 | √ | 4.38 | 0.25 | -0.19 | 简阳 |
注:“√”表示QTL相关性状。 |
[1] |
王利青, 高聚林, 王富贵, 等. 1970s—2010s玉米品种产量及籽粒营养品质的分析[J]. 中国农业大学学报, 2023, 28(5):44-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
孙海艳, 蔡一林, 王久光, 等. 玉米主要营养品质性状的QTL定位[J]. 农业生物技术学报, 2011, 19(4):616-623.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
赵海军, 史佳晴, 王彬, 等. 150份玉米自交系籽粒及其品质性状的综合评价[J]. 河南农业科学, 2023, 52(5):33-39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
兰天茹, 崔婷婷, 何坤辉, 等. 不同氮水平下玉米子粒品质性状的QTL定位[J]. 玉米科学, 2017, 25(2):6-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
刘纪麟. 玉米育种学(第二版)[M]. 北京: 中国农业出版社, 2002:227-237.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
裴玉贺, 李玉冰, 郭新梅, 等. 玉米主要营养品质性状的QTL定位[J]. 玉米科学, 2014, 22(6):21-26
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
Starch is the most abundant storage carbohydrate in maize kernels and provides calories for humans and other animals as well as raw materials for various industrial applications. Decoding of the genetic basis of natural variation in kernel starch content is needed to manipulate starch quantity and quality via molecular breeding to meet future needs. Here, we identified 50 unique single quantitative trait loci (QTLs) for starch content with 18 novel QTLs via single linkage mapping, joint linkage mapping, and a genome-wide association study in a multi-parent population containing six recombinant inbred line populations. Only five QTLs explained over 10% of phenotypic variation in single populations. In addition to a few large-effect and many small-effect additive QTLs, limited pairs of epistatic QTLs also contributed to the genetic basis of the variation in kernel starch content. A regional association study identified five non-starch-pathway genes that were the causal candidate genes underlying the identified QTLs for starch content. The pathway-driven analysis identified ZmTPS9, which encodes a trehalose-6-phosphate synthase in the trehalose pathway, as the causal gene for the QTL qSTA4-2, which was detected by all three statistical analyses. Knockout of ZmTPS9 increased kernel starch content and, in turn, kernel weight in maize, suggesting potential applications for ZmTPS9 in maize starch and yield improvement. These findings extend our knowledge about the genetic basis of starch content in maize kernels and provide valuable information for maize genetic improvement of starch quantity and quality.This article is protected by copyright. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
李冉冉, 张秀英, 李婷, 等. 不同授粉方式下玉米籽粒品质性状的QTL定位[J]. 西北农林科技大学学报(自然科学版), 2021, 49(11):115-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
王丽珊, 张建国, 于滔, 等. 玉米籽粒主要品质性状的分子遗传研究进展[J]. 中国农学通报, 2022, 38(24):8-13.
玉米是全球最主要的粮食作物之一,提高玉米籽粒品质是当今世界玉米育种领域高度关注的问题。因为传统常规育种方法具有育种时间长且转化率低等限制因素,所以解决这一问题最经济有效的方法就是利用分子标记进行辅助选择育种。为了给今后玉米品质性状的分子设计育种提供参考,本研究总结了国内外玉米籽粒品质性状的QTL定位、分子标记辅助改良和候选基因克隆及转基因技术应用的相关研究进展。指出玉米优质基因资源的利用还不够充分,现有分子标记技术在玉米育种中的应用还不够广泛,今后应改进育种方法和品质鉴定技术,以缩短玉米育种周期。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
李燕, 谭君, 李红梅, 等. 高赖氨酸玉米F2:3群体穗部性状与产量的相关及通径分析[J]. 安徽农业科学, 2020, 48(8):41-42,46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
张知仪, 谭君. 强优势、高赖氨酸玉米新品种荃玉9号的选育研究[J]. 种子, 2013, 32(11):100-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
李燕, 梁增浩, 谭君, 等. 优质蛋白玉米‘荃玉9号’籽粒赖氨酸含量全基因组关联分析[J/OL]. 分子植物育种,1-12 [2024-08-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20230922.0808.002.html
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
张中伟. 普通×爆裂玉米RILs构建及主要性状QTL分析[D]. 郑州: 河南农业大学, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
李学慧, 申顺先, 李玉玲, 等. 利用种子性状QTL定位高油玉米蛋白质含量QTL[J]. 作物杂志, 2011(4):40-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
赵志鑫, 崔婷婷, 何坤辉, 等. 多环境下玉米籽粒品质性状的QTL定位[J]. 农业生物技术学报, 2018, 26(12):2027-2035.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
张玉娜, 张强, 潘芳芳, 等. 玉米产量相关性状的QTL定位与剖析(英文)[J]. 复旦学报(自然科学版), 2017, 56(4):421-430.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |