稻米品质研究进展

孟嘉楠, 段海燕

中国农学通报. 2024, 40(16): 1-6

PDF(1207 KB)
PDF(1207 KB)
中国农学通报 ›› 2024, Vol. 40 ›› Issue (16) : 1-6. DOI: 10.11924/j.issn.1000-6850.casb2023-0528
农学·农业基础科学

稻米品质研究进展

作者信息 +

Research Progress on Rice Quality

Author information +
History +

摘要

笔者简述了国内外稻米品质的研究现状和发展趋势,总结了稻米品质形成的遗传基础、调控分子机制以及优化稻米品质的策略,揭示了淀粉、蛋白质、脂质、香气及颜色相关基因与稻米品质之间的关联,阐述了基因编辑技术、分子标记辅助技术2种提升稻米品质的具体对策。指出稻米品质研究过程中面临的稻米品质与产量不平衡、稻米品质改良技术转化与推广难、育种过程中水稻存在地区适应性、育种成本高周期长以及消费者对改良稻米的接受程度等挑战,并从多方合作和资源共享、强化基础研究和创新技术、高效筛选和评价方法、考虑多样化需求以及推动产学研结合与技术转化等方面提出应对措施,以期为优化水稻品质和培育高品质稻米品种提供理论参考。

Abstract

In this paper, the research status and development trend of rice quality at home and abroad were reviewed, the genetic basis of rice quality formation, regulatory molecular mechanisms and strategies for optimizing rice quality were summarized, and the correlation between rice quality and related genes such as starch, protein, lipid, aroma and color was revealed. Two specific countermeasures to improve rice quality, gene editing technology and molecular marker-assisted technology, were described. The challenges in rice quality research, such as imbalance between rice quality and yield, difficulty in transforming and popularizing rice quality improvement technology, regional adaptability of rice in breeding process, high breeding cost and long breeding cycle, and consumer acceptance of improved rice, were pointed out. Countermeasures were put forward from the aspects of multi-party cooperation and resource sharing, strengthening basic research and innovative technology, efficient screening and evaluation methods, considering diversified needs, and promoting the integration of industry-university-research and technology transformation, so as to provide theoretical guidance for optimizing rice quality and cultivating high-quality rice varieties.

关键词

水稻 / 稻米品质 / 育种 / 遗传基础 / 分子机制

Key words

rice / rice quality / breeding / genetic basis / molecular mechanism

引用本文

导出引用
孟嘉楠 , 段海燕. 稻米品质研究进展. 中国农学通报. 2024, 40(16): 1-6 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0528
MENG Jianan , DUAN Haiyan. Research Progress on Rice Quality. Chinese Agricultural Science Bulletin. 2024, 40(16): 1-6 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0528

0 引言

草莓是多年生常绿草本植物,在植物分类学上属于蔷薇科(Rosaceae)草莓属(Fragaria),在园艺学上属于浆果类果树。随着国内草莓产业的不断发展,逐步形成了集中性生产区域和专业化生产基地,种植规划逐渐趋向合理,草莓品种改良、繁育方式、栽培及管理技术逐步升级,成为优势农产品产业带、精品区的重要组成部分。据统计,2019年浙江省草莓种植面积6253.34 hm2、产量14.25万t、产值超20亿元[1]。草莓生长喜光,在光照充足的环境下,植株生长旺盛,叶片深绿色,发芽发育好,能够获得丰产。种植过密或遮荫时,由于光照不充足,将影响其正常生长[2-3]。同时,草莓属浅根系作物,叶面较大,叶、茎水分的蒸腾强,因此在整个生长期间都要求有比较充足的水分供应。范长娣等[4]分析闽北光、温、水等气象条件对草莓采收期、产量和单果重的影响,表明草莓移栽后一段时间的温度条件是决定其上市期的关键,温度和光温比是影响草莓产量的主导因子,月降水量、湿温比对产量影响次之;同时,温度低、降水少、湿温配合好,草莓月平均单果重较重。而浙北地区属亚热带季风气候,经常性遭遇低温连阴雨天气[5-7],此时正值大棚草莓开花坐果期和主要采收期,温室内光照不足,会使棚内作物受到损伤,严重时会导致作物停止生长。国内研究人员以番茄、黄瓜、菊花等蔬菜花卉等为试材,经过寡照处理后发现植株的株高、茎粗和叶面积生长速率减小[8-10]
塑料地膜是农业发展中重要的农业生产资料,具有提高地温、保持土壤水分、改善土壤理化性状、延长作物生育期、大幅提高作物产量等优势[11-13]。目前生产中常用的地膜类型为黑色PE膜和透明膜,虽然保水性比较好,可以防除杂草和降低棚内湿度,但也存在反光性差等缺点。围绕不同颜色的地膜应用,吕桂菊等[14]用透明地膜、银灰色反光膜和黑色膜在青椒上进行生产试验,结果显示,3种地膜对青椒均有增产作用,并以银灰色膜的增产效果最好,但Vc和可溶性固形物含量有所下;陈淑兰等[15]研究表明,银灰色地膜覆盖番茄前中后期产量都高于对照。因此,通过地膜覆盖来改善棚内小气候环境,提高作物产量,是生产实践中可以研究的方向。为了探究浙北地区冬春季连阴雨时空发生规律,摸清银黑双色地膜在大棚草莓生产中的应用效果,笔者利用2012—2020年11月—次年4月慈溪国家基本气象站逐日平均气温、24 h降水量观测资料以及日照时数观测资料对该地区低温连阴雨的发生特征进行分析,并于2020年9月在浙江省设施农业气象试验站大棚草莓生产中开展了不同种类地膜的应用效果对比试验,研究不同种类地膜覆盖对草莓植株生长指标及果实发育的影响,为大棚草莓低温寡照灾害防御及设施生产优化提供理论依据。

1 材料与方法

1.1 试验地概况

试验于2020—2021年在慈溪市白沙路街道浙江省设施农业气象试验中心试验基地开展。试验田块地势平坦,土壤类型为壤土,肥力中等,排灌方便,前作为芹菜。试验大棚为标准钢管大棚,南北走向,棚宽8 m,顶高3.2 m,棚长40 m,面积320 m2

1.2 试验材料

供试草莓品种为本地主栽品种‘红颊’。供试地膜分别为银黑双色(上层为银灰色,下层为黑色)和黑色,材质均为聚乙烯,银黑双色地膜厚度为1.2丝,宽度为1 m,黑色地膜厚度为1丝,宽度为1 m,均购至慈溪市浒山创新薄膜经营部。

1.3 试验设计

试验采取大区对比法,在两个规格一致的塑料大棚内,分别做2个处理设计。其中处理1全棚覆盖常规黑膜,处理2全棚覆盖银黑双色膜(银色面对外)。每个处理设置3个小区,随机区组排列,每个小区种植草莓40株。供试草莓于2020年9月8日定植于塑料大棚中,2020年11月9日覆盖地膜,采用高垄栽培,垄高40 cm,垄底宽60 cm,每垄2行,行株距为15 cm×20 cm。两个大棚田间管理操作相同。

1.4 调查方法

1.4.1 气象数据来源

农田小气候观测设备位于两个塑料大棚中部,分别在0.5 m和1.5 m高度设置一个温湿度传感器和太阳总辐射仪,同时在地膜下10 cm处设置温、湿度探头1个,代表浅层土温。温湿度传感器型号DHC2型,太阳总辐射仪型号FS-S6A。数据采集频率为20 s/次,存储每30 min的平均值。棚外数据来源于距试验田100 m的慈溪市国家基本气象站2012—2021年所观测的气象资料,主要包括逐日气温、降水量和日照时数。

1.4.2 株高

在植株进入采收盛期后,分别在试验小区中随机选取10株,用直尺测量株高(植株基部到最高叶片的自然高度)、冠幅(植株冠丛最大幅度之间的距离),重复3次,取平均值。

1.4.3 叶片SPAD值

在植株进入采收盛期后,每隔7 d测定叶片SPAD值。每个小区随机选取5株健壮植株,选择中心展开叶往外数第三叶的中心小叶3个点位,用SPAD-502Plus叶绿素含量测定仪(日本柯尼卡)测量,取平均值作为各叶片的SPAD值[16]

1.4.4 产量和品质

果实成熟后,每个小区随机选取5株作为固定观测样本,对成熟果实进行随熟随采,记目测观察果型、果色、风味。用游标卡尺测量果实横径、纵径。用电子天平测量单果重。用PAL-1型数显糖度计(日本爱宕株式会社)测量可溶性固形物(SSC%)含量。用GMK-835F型水果酸度计测量果实酸度。用HLY-YD5数显果实硬度计测量果实硬度。

1.5 研究方法

1.5.1 连阴雨寡照指标

以国家基本气象站单个站点连续3 d或3 d以上降水量≥0.1mm,其中允许1 d无降水,且日照时数≤2 h,连续2 d无降水为过程结束标志,则定义该测站的1次连阴雨过程[17]

1.5.2 连阴雨发生频次

公式见式(1)。
F=20122020Vi9
(1)
式中F为2012—2020年11月—次年4月慈溪市大棚草莓花果期连阴雨发生频次;Vi为发生连阴雨的次数。

1.5.3 连阴雨强度

连阴雨强度即连阴雨过程降水量与过程日数之比,公式见式(2)。
K=1nAin
(2)
式中,K为连阴雨强度;Ai为日降水量;n为连阴雨过程日数。

1.6 数据处理

数据统计使用Excel 2010软件,数据分析使用SPSS Statistics 27统计分析软件,采用单因素ANOVA进行显著性检验,显著性水平为P<0.05。

2 结果与分析

2.1 2012—2020年慈溪市连阴雨寡照发生频率分布特征

根据1.5.1对连阴雨寡照的定义,得到2012—2020年11月—次年4月慈溪市连阴雨寡照发生频率统计(图1)。由此可知,2012—2020年慈溪市大棚草莓开花坐果期(11月—次年4月)连阴雨共出现86次,概率为17.7%(图1)。连阴雨发生次数最多为11月,最少为4月。连阴雨≥7 d累计出现27次,持续10 d以上的长连阴雨出现11次,其中7 d以上的连阴雨出现最多的是11月,其次是1月。2019年12月—1月出现了长达29 d的连阴雨过程。整体来看,慈溪大棚草莓花果期连阴雨发生次数呈微下降趋势,线性趋势系数为 -0.005。
图1 2012—2020年11月—次年4月逐月连阴雨发生次数

Full size|PPT slide

2.2 2012—2020年慈溪市连阴雨寡照发生强度分布特征

图2给出了2012—2020年11月—次年4月慈溪市连阴雨寡照发生强度分布特征,由此可知,在此期间慈溪市大棚草莓花果期连阴雨强度平均为6.3。2018—2020年大棚草莓花果期连阴雨强度整体处在高位区,其中2018年11月—2019年4月连阴雨强度值最大,为8.33。整体来看,慈溪大棚草莓花果期连阴雨发生强度呈增强趋势,线性趋势系数为0.0264。
图2 2012—2020年11月—次年4月逐月累计降水量和连阴雨强度

Full size|PPT slide

2.3 不同地膜覆盖温室内光温环境的变化

图34给出了不同地膜覆盖平均浅层地温和棚内太阳总辐射随日期变化情况。由此可知,在草莓全生育期,大棚内地温呈现先降后升的趋势,定植后,在未覆盖地膜的阶段,两个处理地温基本保持一致,2020年11月9日覆盖地膜后,银黑双色膜处理组浅层地温整体低于黑膜覆盖处理组,平均气温低0.4℃;随着入春外界日平均气温上升到10℃以上,2021年3月10日起,银黑双色膜处理组浅层地温则高于黑膜覆盖处理组0.5℃;整体来看,在气温较低的冬春季,两种地膜均能有效提升和保持浅层土温至10℃以上。从棚内太阳总辐射变化趋势来看,覆盖地膜后,银黑双色膜处理组太阳总辐射整体高于黑膜覆盖组,平均值高9.1 W/m2。由此说明在气温较低的冬季,银黑双色膜的增温效果不及黑膜,但是由于银色涂层能强烈反射太阳辐射,提高棚内太阳总辐射值,可以起到增加光效的作用。
图3 不同地膜覆盖平均浅层地温随日期的变化

Full size|PPT slide

图4 不同地膜覆盖棚内太阳总辐射随日期的变化

Full size|PPT slide

2.4 不同地膜覆盖对大棚草莓植株农艺性状的影响

表1给出了不同地膜覆盖草莓植株农艺性状对比,由此可知,使用黑色地膜植株在始花期和采收末期的株高均高于使用银黑双色膜。整个生育期,使用黑色地膜株高增长量14.3 cm,而使用银黑双色地膜,植株株高增长量8.7 cm。从冠幅指标来看,使用黑膜和银黑双色膜区别不大。
表1 不同地膜覆盖对大棚草莓植株农艺性状的影响 cm
处理 始花期 采收末期 株高增长量 冠幅增长量
株高 冠幅 株高 冠幅
黑膜(CK) 20.8 40.9 35.1 46.4 14.3 5.5
银黑双色膜 19.6 39.9 28.3 46.5 8.7 6.6

2.5 不同地膜覆盖对大棚草莓叶片SPAD值的影响

图5给出了进入采收期后,不同地膜覆盖大棚草莓叶片SPAD值变化趋势。由图可知,随着生育进程的发展,不同地膜覆盖草莓叶片SPAD值变化趋势较为一致,呈现明显下降后稳步提升的过程。2021年1月22日—2月2日、2021年2月25日—3月8日出现2次明显的连阴雨过程,通过对叶片SPAD值连续测定显示,在此期间,银黑双色膜覆盖处理的叶片叶绿素值要高于黑膜处理组,特别是2月下旬出现的连阴雨过程,在覆盖银黑双色膜棚内的植株叶片SPAD值较为稳定,而在覆盖黑膜棚内,植株叶片SPAD值有明显下降的趋势。说明在低温寡照环境下,银黑双色膜对植株叶片叶绿素的合成有促进作用。
图5 不同地膜覆盖对大棚草莓叶片SPAD值的影响

Full size|PPT slide

2.6 不同地膜覆盖对大棚草莓产量的影响

图6~7给出了不同地膜覆盖对大棚草莓产量以及果实大小、单果重等影响产量形成的指标统计,由此可知,在生产早期(12月—次年2月),银黑双色膜处理草莓平均产量3629.4 kg/hm2,黑膜覆盖处理草莓平均产量2951.1 kg/hm2,增产可达20%;到了生产后期,两种处理产量水平较为一致。从全期来看,银黑双色膜处理可以提高大棚草莓的产量和产值。而从草莓果型来看,不同地膜覆盖对果实横径有一定影响,银黑双色膜处理对横径的增长有一定的促进作用,而对果实纵径则没有明显影响。
图6 不同地膜覆盖对大棚草莓小区产量的影响

Full size|PPT slide

图7 不同地膜覆盖对大棚草莓果实横、纵径的影响

Full size|PPT slide

2.7 不同地膜覆盖对大棚草莓品质的影响

表2给出了不同地膜覆盖对大棚草莓品质指标的统计。由表可知,生产早期银黑双色膜处理草莓可溶性固形物显著高于CK处理,果实酸度与CK无明显差别,生产后期银色双色膜处理组草莓酸度显著低于CK处理。在整个生产期,银黑膜处理组草莓糖酸比均显著高于CK,说明银黑双色膜处理有助于增加糖酸比,提高果实风味。从果实硬度来看,银黑双色膜处理果实硬度更高,更有助于商品化运输。整体来看,大棚覆盖银黑双色膜可以起到促进果实品质提高的作用。
表2 不同地膜覆盖对大棚草莓品质的影响
处理 早期 后期
可溶性固形物
SSC%
酸度 糖酸比 硬度 可溶性固形物
SSC%
酸度 糖酸比 硬度
黑膜(CK) 11.4 0.9 12.6 2.94 9.6 0.8 11.7 1.84
银黑双色膜 12.5* 0.9 13.7* 3.25 9.8 0.7* 14.8* 2.07*
注*表示通过0.05信度的显著性检验。

3 结论与讨论

通过统计分析,2012—2020年慈溪市大棚草莓开花坐果期(11月—次年4月)连阴雨发生概率为17.7%,发生次数呈微下降趋势,线性趋势系数为 -0.005,连阴雨强度平均为6.3,发生强度呈增强趋势,线性趋势系数为0.0264。连阴雨发生次数最多为11月,12月次之,最少为4月;7 d以上的连阴雨出现最多的是11月,其次是1月。而11—12月为草莓头茬果关键的开花坐果期,连阴雨寡照直接影响着草莓的早期产量和品质,会造成在草莓实际生产中植株生长减缓、产量品质下降、发病率提高等情况。
此次实验表明,银黑双色地膜与传统黑色地膜具有相似的增温效果,能够有效提升大棚内浅层地温,保证草莓在冬春季的正常生长。虽然银黑双色地膜对地温的提升作用不及黑色地膜,但是表面的银色涂层能强烈反射太阳辐射,提高棚内太阳总辐射值,可以起到增加光效的作用。而棚内太阳总辐射的增加,可以帮助叶片叶绿素的合成,特别是出现连阴雨天气过程时,低温寡照的环境会减缓植株生长,银膜相较于黑膜能有效促进植株叶片叶绿素的合成,提高叶片SPAD值。叶片是植物进行光合作用的重要场所,光温条件将直接影响叶绿体色素的合成以及光合速率的快慢[18-19],从而对植物的生长发育造成重要影响。有研究表明,低温寡照胁迫下黄瓜叶片光合作用的减弱,是由于黄瓜叶片光合色素含量下降、气孔导度下降、光系统受损,致使叶片捕获的光能减少、气体交换受阻、用于光化学反应的能量减少而引起的[20],这与此次试验结果相一致。
从草莓产量来看,在关键的12月—2月,银黑双色膜处理草莓平均产量3629.4 kg/hm2,黑膜覆盖处理草莓平均产量2951.1 kg/hm2,增产可达20%。而入春后,随着外界气温升高,光照逐渐充足,银黑膜对产量的促进影响不再明显。另外,从草莓品质指标来看,覆盖银黑双色膜,有助于提高草莓果实糖酸比和果实硬度,果实风味更佳,也有助于商品化运输。
因此,在生产上,可以采用覆盖银黑双色地膜,来改善大棚内小气候环境,达到草莓增产增收的作用。目前,慈溪市坎墩街道农创园已开展银黑双色地膜在大棚草莓生产中的应用,得到农户的较好反响。银黑双色地膜的应用,可以推广到大棚番茄、西瓜、葡萄等其他作物,积极应对浙北地区较为频发的连阴雨寡照天气,以达到进一步提升农作物产量和品质的作用。同时,如何应用数值预报产品定量预测连阴雨天气以及草莓如何根据气象条件科学指导果农进行栽培技术管理,以减轻不利气象因素对草莓产量和品质的影响,是可以进一步深入研究的方向。

参考文献

[1]
方志, 陆展华, 王石光, 等. 稻米品质性状研究进展与应用[J]. 广东农业科学, 2020, 47(5):12.
[2]
PROM-U-THAI C R B. Rice quality improvement. A review[J]. Agronomy for sustainable development, 2020, 40(4):1-16.
[3]
高振楠, 郝媛媛, 李春寿, 等. 水稻调控淀粉合成基因的研究进展[J]. 植物遗传资源学报, 2023, 24(1):63.
[4]
刘利平, 张文霞, 曾礼华, 等. 杂交水稻骨干亲本的WxALK等位变异与蒸煮食味品质的关联分析[J]. 应用与环境生物学报, 2023, 29(2):386-393.
[5]
毛兴学, 郑晓钰, 孙炳蕊, 等. 应用CRISPR/Cas9技术创制低直链淀粉含量水稻种质[J]. 植物遗传资源学报, 2022, 23(2):583-591.
[6]
冯琳皓. 水稻Wx/GBSSI控制直链淀粉合成重要位点鉴定及新等位变异创制[D]. 江苏: 扬州大学, 2021.
[7]
毛慧, 彭彦, 毛毕刚, 等. 水稻直链淀粉合成调控新基因Wx410的功能与效应分析[J]. 中国水稻科学, 2022, 36(6):579-585.
【目的】挖掘Wx新等位变异,明确Wx410新等位基因对稻米品质性状的影响。【方法】以Wx<sup>lv</sup>、Wx<sup>a</sup>和Wx<sup>b</sup>等位基因为模板,利用PCR进行第10外显子第101位碱基的A-G单点突变,分别构建了不同Wx等位背景下的Wx410定点突变植物表达载体pEGFC-Wx<sup>lv</sup>410、pEGFC-Wx<sup>a</sup>410和pEGFC-Wx<sup>b</sup>410,阳性对照组载体分别为pEGFC-Wx<sup>lv</sup>、pEGFC-Wx<sup>a</sup>和pEGFC-Wx<sup>b</sup>。通过转化糯稻品种苏御糯,分析该位点的变异对稻米品质的遗传效应。【结果】花后7 d和14 d,转基因植株pEGFC-Wx<sup>lv</sup>410,pEGFC-Wx<sup>a</sup>410及pEGFC-Wx<sup>b</sup>410的胚乳Wx基因表达量较各自的阳性对照材料无显著变化,而颗粒结合淀粉合酶活性极显著降低;转基因植株直链淀粉含量较野生型显著降低,而糊化温度无明显变化;pEGFC-Wx<sup>a</sup>410及pEGFC-Wx<sup>b</sup>410的胶稠度较各自的阳性对照材料显著升高,而pEGFC-Wx<sup>lv</sup>410的胶稠度较其阳性对照材料显著降低。【结论】pEGFC-Wx410为水稻淀粉合成的一个新的功能等位基因,控制的直链淀粉含量为4%~6%,刚好弥补了目前所鉴定的复等位基因所调控的直链淀粉含量在这个范围内的空缺,为稻米食味和加工相关品质改良提供更丰富的遗传资源。
[8]
刘玮琦, 罗丽华, 肖应辉. 水稻Wx基因及其稻米品质改良应用研究进展[J]. 分子植物育种, 2023, 21(11):3636-3642.
[9]
姚姝, 张亚东, 刘燕清, 等. Wxmp基因背景下可溶性淀粉合成酶基因SSⅡa和去分支酶基因PUL对水稻蒸煮食味品质的影响[J]. 中国水稻科学, 2020, 34(3):217-227.
【目的】分析在同一主效基因(Wx<sup>mp</sup>)背景下可溶性淀粉合成酶基因SS&#x02161;a和去分支酶基因PUL对稻米蒸煮食味品质的影响,以期为水稻品质遗传改良提供依据。【方法】选择在SS&#x02161;a和PUL存在多态性而其他淀粉合成酶相关基因没有多态性的半糯品系宁0145和粳稻品种武运粳21进行杂交,获得F<sub>2</sub>群体与F<sub>3</sub>株系。利用分子标记,选择含有Wx<sup>mp</sup>基因的F<sub>2</sub>单株与F<sub>3</sub>株系,将这些F<sub>2</sub>单株与F<sub>3</sub>株系分成SS&#x02161;a<sup>n</sup>PUL<sup>n</sup>、SS&#x02161;a<sup>n</sup>PUL<sup>w</sup>、SS&#x02161;a<sup>w</sup>PUL<sup>n</sup>和SS&#x02161;a<sup>w</sup>PUL<sup>w</sup>4种基因型(<sup>n</sup>和<sup>w</sup>分别表示该基因来源于宁0145和武运粳21),分析不同基因型蒸煮食味品质性状的差异,探讨同一Wx<sup>mp</sup>基因背景下不同SS&#x02161;a和PUL等位基因对蒸煮食味品质性状的影响。【结果】不同基因型间蒸煮食味品质性状均存在显著差异,来源于武运粳21的SS&#x02161;a<sup>w</sup>基因和PUL<sup>w</sup>基因分别使直链淀粉含量增加0.29%~1.00%和0.62%~1.18%,且PUL的效应大于SS&#x02161;a,两者间存在互作效应。SS&#x02161;a<sup>w</sup>基因和PUL<sup>w</sup>基因降低胶稠度和崩解值,提高了热浆黏度、冷胶黏度、消减值和回复值,对糊化温度、峰值黏度和峰值时间的作用较小。【结论】明确了Wx<sup>mp</sup>背景下SS&#x02161;a和PUL基因对稻米蒸煮食味品质的遗传效应,该研究结果为SS&#x02161;a和PUL基因的分子标记辅助选择改良稻米品质提供了理论依据。
[10]
陆丹丹, 叶苗, 张祖建. 稻米蛋白质及其组分研究概况及其对稻米品质的影响[J]. 作物杂志, 2022, 38(2):28-29.
[11]
刘秋员, 陶钰, 程爽, 等. 不同直链淀粉与蛋白质含量类型粳稻稻米品质特征[J]. 食品科技, 2022, 47(11):150-158.
[12]
赵一童. 蛋白质含量对水稻稻米品质及其米粉糊化回生特性影响[D]. 南宁: 广西大学, 2022.
[13]
PENG B, KONG H L, LI Y B, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature communications, 2014, 5(1):1298-1301.
[14]
YANG Y H, GUO M, SUN S Y, et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature communications, 2019, 10(1):138-141.
[15]
陆丹丹, 雍明玲, 陶钰, 等. 优良食味水稻品种籽粒蛋白质积累特征及其对氮素水平的响应[J]. 中国水稻科学, 2022, 36(5):520-530.
【目的】探讨优良食味水稻品种的籽粒蛋白质积累特征及其对氮素水平的响应。【方法】以食味值不同的常规粳稻和杂交稻为材料,在结实期设置不同氮素施用水平处理,分析不同类型品种在不同氮素水平下的蒸煮食味品质及其与稻米蛋白质及其组分含量的关系。进一步分析各品种在不同氮素水平下稻穗不同部位的氨基酸含量及籽粒蛋白质含量在结实期的动态变化,总结优良食味水稻品种的籽粒蛋白质积累特征及其对氮素水平的响应特征。【结果】优良食味水稻品种籽粒蛋白质含量较低,且随着氮素水平的增加而上升;优良食味水稻崩解值较高,消减值较低;蒸煮食味品质受氮素水平影响较小。优良食味水稻品种蛋白组分含量较低,且稻米蛋白质含量与食味品质呈显著负相关。在常规粳稻中,稻米食味值与清蛋白、球蛋白和醇溶蛋白含量均显著负相关;在杂交稻中,稻米食味值与醇溶蛋白和谷蛋白含量显著负相关。优良食味水稻品种籽粒充实过程中游离氨基酸含量较低,并呈现较低水平的蛋白质积累。而食味较差品种灌浆期籽粒的氨基酸含量较高,成熟籽粒蛋白质含量也较高,且氮素供应水平提升其籽粒蛋白质含量的效应更为显著。【结论】优良食味水稻品种的籽粒蛋白质含量较低,与其充实过程中蛋白质积累水平较低有紧密关系,且受氮素水平影响较小。
[16]
张秀琼. 胚乳脂类对稻米品质和消化特性的影响[D]. 杭州: 浙江大学, 2018.
[17]
ZHANG Z, CHENG Z J, GAN L, et al. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice[J]. Plant science, 2016, 249:35-45.
Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[18]
WANG H L, ZHANG W W, LIU L L, et al. Dynamic QTL analysis on rice fat content and fat index using recombinant inbred lines[J]. Cereal chemistry, 2008, 85(6):769-775.
[19]
WANG X, ZHOU W, LU Z, et al. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice[J]. Plant science, 2015, 239:200-208.
[20]
TONG C, BAO J S. Rice lipids and rice bran oil[A].// In: BAO J S. Rice: Chemistry and technology[[M]. Duxford: Woodhead publishing, 2019:131-168.
[21]
魏晓东, 张亚东, 赵凌, 等. 稻米香味物质2-乙酰-1-吡咯啉的形成及其影响因素[J]. 中国水稻科学, 2022, 36(2):132.
[22]
PRODHAN Z H, SHU Q Y. Rice aroma: A natural gift comes with price and the way forward[J]. Rice science, 2020, 27(2):86-100.

Aromatic rice belongs to a small but important sub-group of rice, which is highly regarded for its excellent aroma and superior grain quality. Aromatic rice, especially Basmati- and Jasmine-type rice, is being traded at a high price in the local and global markets. Genetically, rice aroma is a phenotypical expression of spontaneous recessive mutations of the OsBadh2 gene (also known as fgr / badh2 / osbadh2 / os2AP gene). These mutations inhibit the flow of γ-aminobutyraldehyde (GAB-ald) to γ-aminobutyric acid (GABA), and consequently, the accumulated GAB-ald is diverted to a potent flavour component 2-acetyl-1-pyrroline (2AP) by a non-enzymatic reaction with methylglyoxal. The natural incidence of non-functional osbadh2 mutation along with selection and nursing by the farmer from the ancient time makes rice aroma as a prominent natural gift. As GABA and methylglyoxal play significant roles in stress tolerance, and their biosynthesis is strictly regulated in rice plants, the accumulation of 2AP in aromatic rice depends on the interaction of various genetic and environmental factors, and its production may come at some costs of sacrificing tolerance. This review focused on some potential underlying genes in the 2AP and GABA biosynthesis pathways, and analyzed most aspects of aroma formation in rice, and summarized the molecular mechanism of aroma production together with its genetic and non-genetic influencing factors. The present review also stated approaches to produce high-quality aromatic rice via developing novel cultivars and with good agronomic knowledge-based practice.

[23]
SHAN Q W, ZHANG Y, CHEN K L, et al. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant biotechnology, 2015, 13(6):791-800.
[24]
朴日花, 金永梅, 李萍, 等. 我国北方香型粳稻资源遗传多样性及其香味基因Badh2的等位基因分析[J]. 吉林农业大学学报, 2021, 43(5):507-515.
[25]
宁敏, 刘俊雄, 暴亚冲, 等. 水稻种质资源香味基因Badh2的分子鉴定及香稻筛选[J]. 分子植物育种, 2021, 19(15):5017-5029.
[26]
郑菲艳, 郑建华, 王洪飞, 等. 中国有色稻米功能性成分遗传与育种研究进展[J]. 福建农业学报, 2021, 36(1):115-116.
[27]
刘传光, 周新桥, 陈达刚, 等. 功能性水稻研究进展及前景展望[J]. 广东农业科学, 2021, 48(10):87-99.
[28]
张家健, 汪雨萍, 刘海平, 等. 黑米稻育种及果皮色素遗传研究进展[J]. 江西农业学报, 2022, 34(5):14-15.
[29]
曾跃辉, 韦新宇, 黄建鸿, 等. 不同来源特种稻香味和黑色种皮基因的鉴定与遗传特性分析[J]. 植物遗传资源学报, 2021, 22(4):951-962.
特种稻是一类具有特殊遗传性状和用途的水稻品种,目前已成为杂交水稻育种的一个重要方向,选择和利用不同来源特种稻种质资源并对其特殊性状基因型进行鉴定和遗传特性分析,对进一步促进特种稻的遗传改良及新品种的选育具有重要意义。本研究利用特异性分子标记InDel-E2、FMbadh2-E7、CAPSRa和CAPS-Ra以及自主开发设计的特异性功能标记FMbadh2-E2、FMbadh2-E7A、FMbadh2-E7B、Ra-CAPS1和Ra-CAPS2并结合基因克隆和测序技术对来自不同地区的32份优质香型水稻亲本材料的香味基因和8份黑米水稻品种的黑色种皮基因进行了基因型鉴定和分析。研究发现,在32份香型水稻材料中,有28份香味性状来源于水稻第8号染色体上编码甜菜碱脱氢酶基因Badh2的功能缺失突变,且为常见的badh2-E7等位突变类型,其在Badh2基因第7外显子处发生8-bp缺失和3个单核苷酸(SNPs)位点多态性突变;2份(板仓香糯和八桂香)表现为香味基因杂合型(Badh2/badh2);2份(溪香和莉香占)在Badh2基因第2和第7外显子处均未发生碱基缺失突变,且具有完整的Badh2基因位点编码序列,其香味性状可能不受Badh2等位基因控制。另外,研究发现,8份黑米水稻品种的黑色种皮均由位于水稻第4号染色体上的Ra/Pb基因控制,其在第7外显子处均表现为2-bp(GT)的缺失突变。同时本研究通过构建多个杂交F2群体对Badh2和Ra基因进行了遗传特性分析,发现其香味和黑色种皮性状分别受1对细胞核隐性和1对细胞核显性主效基因控制。本研究通过对不同来源优质香型水稻亲本材料的香味基因和黑米水稻品种的黑色种皮基因进行鉴定、特异性功能分子标记的开发以及遗传特性分析,为进一步通过分子标记辅助选择育种技术,选育优质、高产且具有香味的杂交水稻新品种及黑米品种提供了重要的理论基础,可明显提高特种稻的选育效率,同时在进一步为发现和挖掘新的香味控制基因及黑色种皮基因的研究上具有重要意义。
[30]
刘强明, 肖人鹏, 唐永群, 等. 优质香型红米杂交水稻新组合渝红优9341[J]. 杂交水稻, 2022, 37(2):56-58.
[31]
陈达刚, 周新桥, 郭洁, 等. 两系杂交籼稻红米新组合南两优红3号[J]. 杂交水稻, 2021, 36(3):115-117.
[32]
许鸿江. 红米杂交稻新组合深两优2802在将乐县的高产栽培技术[J]. 杂交水稻, 2022, 37(5):123-124.
[33]
NAGAO S, TAKAHASHI M. Trial construction of twelve linkage groups in Japanese rice[J]. Genetical studies on rice plant, 1963, 53(1):72-130.
[34]
李霞, 杜娟, 杨晓梦, 等. 红米‘rm257’种皮颜色遗传模式分析及Rc基因功能标记开发[J]. 西南农业学报, 2022, 35(5):1010-1015.
[35]
陈可, 周新桥, 陈达刚, 等. 复杂信号通路参与调控水稻粒重相关基因研究进展[J]. 广东农业科学, 2021, 48(10):6.
[36]
ZHENG J, MA Y, ZHANG M, et al. Expression pattern of FT/TFL1 and miR156-targeted SPL genes associated with developmental stages in Dendrobium catenatum[J]. International journal of molecular sciences, 2019, 20(11):2725.
[37]
MA Y, XUE H, ZHANG F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant biotechnology journal, 2021, 19(2):311-323.
[38]
曾慧玲, 莫祖意, 蒲巧贤, 等. 水稻OsSPL3启动子克隆及表达分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3):1-10.
[39]
LEE J, PARK J J, KIM S L, et al. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint[J]. Plant molecular biology, 2007, 65(4):487-499.
The area between the upper part of the leaf sheath and the basal portion of the leaf blade contains several specialized organs, such as the laminar joint, auricle and ligule. Here we report the identification of T-DNA insertional mutant lines that lack all of these organs. The gene knocked out in the mutant lines encodes a protein that contains a SBP (SQUAMOSA promoter Binding Protein)-domain and is highly homologous to the maize LIGULELESS1 (LG1) gene. At the amino acid sequence level, the OsLG1 protein is 69% identical to maize LG1 and 78% identical to barley LG1. We named the rice gene OsLIGULELESS1 (OsLG1). Transient expression of an OsLG1:RFP (Red Fluorescent Protein) fusion protein indicated that the protein is localized to the nucleus. Transgenic plants harboring the OsLG1 promoter:GUS (beta-glucuronidase) reporter gene construct display preferential expression in developing laminar joint regions and meristemic regions. The gene is also weakly expressed in the ligule, auricles, and leaf sheaths at the basal region. These results indicate that OsLG1 is a transcriptional factor that plays an important role in building the laminar joint between leaf blade and leaf sheath boundary, thereby controlling ligule and auricle development.
[40]
HU L, CHEN W L, YANG W, et al. OsSPL9 regulates grain number and grain yield in rice[J]. Frontiers in plant science, 2021, 12:682018.
[41]
LAN T, ZHENG Y, SU Z, et al. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.)[J]. G3, 2019, 9(12):4107-4114.
[42]
LIAN L, XU H B, ZHANG H, et al. Overexpression of OsSPL14 results in transcriptome and physiology changes in indica rice‘MH86’[J]. Plant growth regulation, 2020, 90(2):265-278.
[43]
YUAN H, QIN P, HU L, et al. OsSPL18 controls grain weight and grain number in rice[J]. Journal of genetics and genomics, 2019, 46(1):41-51.
[44]
YAN Y, WEI M X, LI Y, et al. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.)[J]. Plant science, 2021, 302:110728.
[45]
陈可, 周新桥, 陈达刚, 等. 复杂信号通路参与调控水稻粒重相关基因研究进展[J]. 广东农业科学, 2021, 48(10):5.
[46]
谷玉娟, 梁大安, 郝天琪, 等. 缺失OSR结构域功能的GS3蛋白正向调控水稻籽粒大小[J]. 植物遗传资源学报, 2023, 24(4):1-8.
[47]
韦叶娜. 直立穗水稻R499产量及稻米品质对栽培密度的响应[D]. 绵阳: 西南科技大学, 2020.
[48]
TAO Y J, MIAO J, WANG J, et al. RGG1, involved in the cytokinin regulatory pathway, control grain size in rice[J]. Rice, 2020, 13(1):76.
[49]
CHEN K, LYSKOWSKI A, JAREMKO L, et al. Genetic and molecular factors determining grain weight in rice[J]. Frontiers in plant science, 2021, 12:605-799.
[50]
SUN P, ZHANG W, WANG Y, et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice[J]. Journal of integrative plant biology, 2016, 58(10):836-847.
[51]
E Zhiguo, LI Tingting, ZHANG Huaya, et al. A group of nuclear factor y transcription factors are sub-functionalized during endosperm development in monocots[J]. Journal of experimental botany, 2018, 69(10):2495-2510.
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that consists of three subunits, NF-YA, NF-YB, and NF-YC. Gene functions of NF-Ys during endosperm development are not well understood. In this study, we identified eight rice NF-Y-encoding genes, namely OsNF-YA8, OsNF-YB1,9, and OsNF-YC8,9,10,11,12, that are predominantly expressed in the endosperm. Interestingly, the close homologs of these OsNF-Ys are present only in monocot species and are also preferentially expressed in the endosperm, suggesting that they have roles in the regulation of endosperm development. A systemic analysis of interactions between rice endosperm-preferential NF-Ys in yeast revealed that OsNF-YBs and OsNF-YCs could interact with each other. We also found that the endosperm-preferential OsNF-YBs and OsNF-YCs could interact with some ethylene response factors (ERFs) of rice. Unlike OsNF-YC8,9,10, the members of OsNF-YB1,9 or OsNF-YC 11,12 showed no transcriptional activation when present alone. However, they displayed functional activity while in dimer form. In addition, OsNF-YB1-knockout lines showed significant changes in seed morphology, further confirming its role in endosperm development. Our findings provide evidence that a group of phylogenetically conserved NF-Ys is probably differentiated in monocots to regulate endosperm development.
[52]
张金霞, 刘贺梅, 孙建权, 等. 分子标记技术在水稻品种改良中的应用[J]. 中国种业, 2021(9):14.
[53]
黄娟, 刘开强, 邓国富, 等. 水稻香味基因荧光分子标记开发及育种应用[J]. 植物生理学报, 2020, 56(5):1015-1022.
[54]
李孝琼, 韦宇, 陈炜坚, 等. 水稻香味基因OsBadh2分子标记的开发及优质香稻新品种‘那谷香’的选育[J]. 分子植物育种, 2024.
[55]
郑景生, 江良荣, 黄荣裕, 等. 应用香型分子标记辅助选育优质香稻新品种佳福香占[J]. 福建稻麦科技, 2021, 39(2):7-10.
[56]
陈春, 郭新亚, 王磊, 等. 利用GS9粒型基因分子标记改良水稻粒型的效应研究[J]. 江西农业学报, 2022, 34(2):15-19.
[57]
刘维, 廖耀平, 卢东柏, 等. 分子标记技术聚合Wx基因改良水稻早熟不育系品质[J]. 分子植物育种, 2022, 20(14):4691-4699.
[58]
任俊, 曹跃炫, 黄勇, 等. 基因编辑技术及其水稻中的发展和应用[J]. 中国稻米, 2021, 27(4):92-100.
CRISPR/Cas系统作为一种新兴的基因编辑系统,以其简单、高效、特异性高等特点已广泛应用于植物功能基因组研究和品种改良。在本文中,首先,我们系统总结了CRISPR/Cas技术及其衍生技术在植物中的开发和优化;其次,重点介绍了基于基因组编辑技术的水稻种质和品种改良的最新进展,并描述了基于基因编辑技术的水稻育种新策略,这是传统育种很难实现的;最后,还讨论了基因编辑技术在未来作物和粮食生产中所要面对的挑战。
[59]
周俊飞, 高利芬, 汪伟航, 等. 利用CRISPR/Cas9技术对水稻香味品质进行遗传改良[J]. 华北农学报, 2020, 35(2):57-64.
为了获得经济价值更高的香稻品种,利用成熟的CRISPR/Cas9技术,在水稻Badh2基因上设计sgRNA-E2和sgRNA-E3 2个靶位点,对超级稻品种龙粳31的香味品质进行改良,其中靶位点sgRNA-E2跨第2个内含子和第2个外显子,靶位点sgRNA-E3位于第3外显子区。经检测共获得有碱基突变的转基因植株6株,其中2个单株为纯合突变,4个单株为双等位突变。突变类型包括碱基缺失、插入及碱基变异,其中突变单株Badh2-E2-13有大片段缺失,为双等位突变,分别缺失64,108 bp。在转录水平上发现6个突变株系的Badh2基因表达量均比野生型显著降低(P0</sub>突变体种子的香味物质2AP含量,发现5个突变单株的2AP含量相对野生型显著提高(P1</sub>主要农艺性状的调查发现,3个株系在香味物质含量提高的同时主要农艺性状和野生型没有显著差异。进一步对T<sub>1</sub>植株进行筛选,共获得了无转基因序列的突变单株10个。综上,利用CRISPR/Cas9技术成功对超级稻品种龙粳31的香味品质进行了遗传改良,实现了香味物质含量的显著提高,为香稻和超级稻的育种提供了基础材料。
[60]
韩政宏, 段宇轩, 徐善斌, 等. 利用CRISPR/Cas9技术敲除GS3GS9基因改良水稻粒型性状[J]. 华北农学报, 2022, 37(2):9-17.
为促进长粒型粳稻品种的选育,以粳稻品种东富139、龙粳31和东农427为试验材料,利用CRISPR/Cas9基因编辑技术构建了pYLCRISPR/Cas9-GS3-RNA和pYLCRISPR/Cas9-GS3-GS9-RNA 2个敲除载体,通过农杆菌转化法侵染受体材料的愈伤组织,对GS3和GS9基因进行定点编辑。最终,3个品种在T<sub>2</sub>都获得了GS3单基因突变、GS9单基因突变和GS3、GS9双基因突变,且无T-DNA元件的纯合植株。在成熟期对T<sub>2</sub>突变体及其野生型的农艺性状进行考察分析,结果表明,与野生型相比,3个品种的gs3突变植株的粒长、千粒质量均显著增加,粒宽、结实率和穗粒数无显著变化;gs9突变体粒长显著增加,粒宽显著减少,千粒质量、结实率和穗粒数无显著变化;gs3gs9突变体粒长增加,且增幅大于gs3和gs9,同时粒宽显著减少,千粒质量显著增加,而结实率和穗粒数无显著变化。综上,利用CRISPR/Cas9技术对东富139、龙粳31和东农427等3个粳稻品种的粒型进行改良,加快了长粒型粳稻新品种的选育进程。
[61]
杨平, 陈春莲, 姚晓云, 等. 利用基因编辑技术改良水稻直链淀粉含量与香味[J]. 分子植物育种, 2020, 18(3):915-923.
[62]
黄李春, 顾正文, 谈红艳, 等. CRISPR/Cas9技术编辑Wx基因创制新型糯稻种质[J]. 植物遗传资源学报, 2021, 22(3):789-799.

基金

黑龙江大学与企业合作横向项目“水稻育种材料性状基因的鉴定分析”(21113 分析)
PDF(1207 KB)

325

Accesses

0

Citation

Detail

段落导航
相关文章

/