新疆中天山北坡断裂带不同海拔高度土壤温度分布特征

宫恒瑞, 郑玉萍, 苗运玲

中国农学通报. 2024, 40(6): 84-90

PDF(1798 KB)
PDF(1798 KB)
中国农学通报 ›› 2024, Vol. 40 ›› Issue (6) : 84-90. DOI: 10.11924/j.issn.1000-6850.casb2023-0233
资源·环境·生态·土壤

新疆中天山北坡断裂带不同海拔高度土壤温度分布特征

作者信息 +

The Distribution Characteristics of Soil Temperature at Different Altitudes in Northern Slope Fault Zone of the Middle Tianshan Mountain in Xinjiang

Author information +
History +

摘要

研究中天山断裂带从高山带到准噶尔盆地边缘整个过渡带的土壤温度分布特征有助于理解干旱区土壤环境特征,从而为土地利用、农业生产提供依据。本文选取新疆中天山断裂带海拔高度呈梯度分布的6个气象站2005年至2020年各层土壤温度的日观测数据,利用统计方法分析了不同地形、不同深度土壤温度随海拔高度的变化特征以及不同海拔高度土壤温度随深度的变化特征。分析表明:中天山北坡土壤温度变幅随海拔高度的降低而升高。不同地形的土壤最高温和最低温的年温差浅层大于深层,由浅至深年最高温度和年最低温度出现的时间逐渐推迟;年内中天山北坡不同海拔高度0~20 cm的土壤日平均温度曲线大致呈余弦函数曲线,320 cm深度的土壤温度基本呈正弦函数分布,较0~20 cm地温的最高和最低晚3个月左右。研究区土壤温度随海拔高度降低呈现先升高后降低的趋势。在海拔为3539~600 m高度范围,土壤温度随着海拔的升高而降低。在600~441 m高度范围,土壤温度随着海拔的下降而下降;0~20 cm为土壤温度变化的活跃层,40 cm深度的土壤温度可称之为过渡层,320 cm深度称为土壤温度的稳定层,80~160 cm称为土壤温度的次稳定层。

Abstract

The study on soil temperature distribution in the whole transition zone from the alpine zone to the edge of Zhungeer Basin in the middle Tianshan fault zone is helpful to understand the characteristics of soil environment in arid area, so as to provide basis for land use and agricultural production. In this paper, the daily observation data of soil temperature at each layer of six meteorological stations in the middle Tianshan fault zone of Xinjiang in 2005 to 2020 were selected. The statistical method was used to analyze the variation characteristics of soil temperature with altitude at different topographies and depths. The results showed that the variation of soil temperature on the northern slope of the middle Tianshan Mountain was enhanced with the decrease of altitude. The annual temperature difference of the highest temperature and lowest temperature in four different terrains was larger in the shallow layer than that in the deep layer, and the occurrence time of the highest temperature in each layer was gradually delayed; in a year, the average daily soil temperature curve at different altitudes of 0-20 cm in the study area was roughly a cosine function curve, and the soil temperature at 320 cm depth was basically a sine function distribution, which was about 3 months later than the maximum and minimum ground temperature of 0-20 cm. The soil temperature in the study area increased first and then decreased with the decrease of altitude. In the range of 3539 to 600 m above sea level, the soil temperature decreased with the increase of altitude. In the range of 600 to 441 m, the soil temperature decreased with the decrease of altitude. 0-20 cm was the active layer of soil temperature change, 40 cm depth of soil temperature could be called the transition layer, 320 cm depth was called the soil temperature stable layer, 80-160 cm was called the soil temperature secondary stable layer.

关键词

中天山北坡 / 海拔高度 / 土壤温度 / 分布特征

Key words

north slope of middle Tianshan Mountain / altitude / soil temperature / distribution characteristics

引用本文

导出引用
宫恒瑞 , 郑玉萍 , 苗运玲. 新疆中天山北坡断裂带不同海拔高度土壤温度分布特征. 中国农学通报. 2024, 40(6): 84-90 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0233
GONG Hengrui , ZHENG Yuping , MIAO Yunling. The Distribution Characteristics of Soil Temperature at Different Altitudes in Northern Slope Fault Zone of the Middle Tianshan Mountain in Xinjiang. Chinese Agricultural Science Bulletin. 2024, 40(6): 84-90 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0233

参考文献

[1]
KANG S, KIM S, OH S, et al. Prediction spatial and temporal patterns of soil temperature based on topography surface cover and air temperature[J]. Forest ecology and management, 2000, 136(1/3):173-184.
[2]
王洋, 刘景双, 王全英. 冻融作用对土壤团聚体及有机碳组分的影响[J]. 生态环境学报, 2013, 22(7):1269-1274.
[3]
王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义[J]. 冰川冻土, 2002, 24(6):693-700.
定量分析了青藏高原各类草地0~0.65m深度范围内有机碳储量,结果表明:青藏高原总面积为1.6027&#215;10hm<sup>2</sup>的草地有机碳量达到335.1973&#215;10<sup>8</sup>tC,其中以高原草甸土和高原草原土有机碳积累量为主,两者之和达到232.36&#215;10<sup>8</sup>tC,占全国土壤有机碳量的23.44%,是全球土壤碳库的2.4%.在有机碳储量分析的基础上,按土壤碳释放的两种主要途径:土壤呼吸作用和土地利用方式变化与草地退化,对草地土壤碳排放进行了估算,揭示出青藏高原草地土壤通过呼吸每年排放的CO<sub>2</sub>达到11.7&#215;10<sup>8</sup>tC&#183;a<sup>-1</sup>,约占中国土壤呼吸总量的2.3%,明显高于全国乃至全球平均值;近30a来,青藏高原草地土壤由于土地利用变化和草地退化所释放的CO<sub>2</sub>估计约有30.23&#215;10<sup>8</sup>tC.保护青藏高原草地对于全球变化意义重大.定量分析了青藏高原各类草地0~0.65m深度范围内有机碳储量,结果表明:青藏高原总面积为1.6027&#215;10hm<sup>2</sup>的草地有机碳量达到335.1973&#215;10<sup>8</sup>tC,其中以高原草甸土和高原草原土有机碳积累量为主,两者之和达到232.36&#215;10<sup>8</sup>tC,占全国土壤有机碳量的23.44%,是全球土壤碳库的2.4%.在有机碳储量分析的基础上,按土壤碳释放的两种主要途径:土壤呼吸作用和土地利用方式变化与草地退化,对草地土壤碳排放进行了估算,揭示出青藏高原草地土壤通过呼吸每年排放的CO<sub>2</sub>达到11.7&#215;10<sup>8</sup>tC&#183;a<sup>-1</sup>,约占中国土壤呼吸总量的2.3%,明显高于全国乃至全球平均值;近30a来,青藏高原草地土壤由于土地利用变化和草地退化所释放的CO<sub>2</sub>估计约有30.23&#215;10<sup>8</sup>tC.保护青藏高原草地对于全球变化意义重大.
[4]
李英年, 张法伟, 刘安花, 等. 矮嵩草草甸土壤温湿度对植被盖度变化的响应[J]. 中国农业气象, 2006, 27(4):265-268,272.
[5]
WATSON C L. Seasonal soil temperature regimes in south-eastern Australia[J]. Journal of soil research, 1980, 18(3):325-331.
[6]
宋长春, 王毅勇. 湿地生态系统土壤温度对气温的响应特征及对CO2排放的影响[J]. 应用生态学报, 2006, 17(4):4625-4629.
[7]
DAVIDSON E C A, BELK E, RICHARD D B. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global change biology, 1998, 4(2):217-227.
Variation in soil temperature can account for most of the seasonal and diel variation in soil CO2 efflux, but the temperature effect is not always consistent, and other factors such as soil water content are known to influence soil respiration. The objectives of this research were to study the spatial and temporal variation in soil respiration in a temperate forested landscape and to evaluate temperature and soil water functions as predictors of soil respiration. Soil CO2 fluxes were measured with chambers throughout an annual cycle in six study areas at the Harvard Forest in central Massachusetts that include soil drainage classes from well drained to very poorly drained. The mean annual estimate of soil CO2 efflux was 7.2 Mg ha–1, but ranged from 5.3 in the swamp site to 8.5 in a well‐drained site, indicating that landscape heterogeneity is related to soil drainage class. An exponential function relating CO2 fluxes to soil temperature accounted for 80% of the seasonal variation in fluxes across all sites (Q10 = 3.9), but the Q10 ranged from 3.4 to 5.6 for the individual study sites. A significant drought in 1995 caused rapid declines in soil respiration rates in August and September in five of the six sites (a swamp site was the exception). This decline in CO2 fluxes correlated exponentially with decreasing soil matric potential, indicating a mechanistic effect of drought stress. At moderate to high water contents, however, soil water content was negatively correlated with soil temperature, which precluded distinguishing between the effects of these two confounded factors on CO2 flux. Occurrence of high Q10 values and variation in Q10 values among sites may be related to: (i) confounding effects of high soil water content; (ii) seasonal and diel patterns in root respiration and turnover of fine roots that are linked to above ground phenology and metabolism; and (iii) variation in the depth where CO2 is produced. The Q10 function can yield reasonably good predictions of annual fluxes of CO2, but it is a simplification that masks responses of root and microbial processes to variation in temperature and water content throughout the soil.
[8]
李卫朋, 范继辉, 沙玉坤, 等. 藏北高寒草原土壤温度变化与冻融特征[J]. 山地学报, 2014, 32(4):407-416.
[9]
杨梅学, 姚檀栋, 小池俊雄. 藏北高原土壤温度分布的纬向效应和高度效应[J]. 山地学报, 1999, 17(4):329-332.
[10]
SHREVE F. Soil temperature as influenced by altitude and slope exposure[J]. Ecology, 1924, 5(2):128-136.
[11]
杨梅学, 姚檀栋, 丁永建, 等. 藏北高原D110点不同季节土壤温度的日变化特征[J]. 地理科学, 1999, 19(6):570-574.
[12]
赵逸舟, 马耀明, 马伟强, 等. 藏北高原土壤温湿变化特征分析[J]. 冰川冻土, 2007, 29(4):578-583.
利用"全球协调加强观测计划(CEOP)亚澳季风之青藏高原试验"(CAMP/Tibet,2001—2010)的观测资料,从不同的时间尺度分析了藏北高原不同地点不同深度的土壤温度和土壤湿度变化特征.结果表明:10 cm以上日平均土壤温度呈正弦变化,而10 cm以下土壤温度变化不大;各层土壤温度最高都出现在7~8月;年际气候的差异至少可以反映到40 cm土壤;各层土壤湿度无明显日变化,存在明显月变化,夏季降水量的多少对各层土壤湿度都有明显的影响.
[13]
WAN G N, YANG M X, WANG X J, et al. Variations in soil temperature at BJ site on the central Tibetan Plateau[J]. Journal of mountain science, 2012, 9(2):274-285.
[14]
王雪姣, 王森, 吉春容, 等. 1961-2015年新疆 0cm地温的时空分布特征及突变分析[J]. 干旱区资源与环境, 2018, 32(4):165-169.
[15]
平措次旺, 索南才吉, 桑旦平措, 等. 珠峰地区浅层地温的变化特征—以定日县为例[J]. 高原山地气象研究, 2021, 41(1):35-40.
[16]
巩俐, 李路华, 王发科, 等. 五道梁地区浅层地温变化特征及其对冻土的影响[J]. 现代农业科技, 2020(20):159-164.
[17]
赵舒曼, 左洪超, 卫翔谦, 等. 干旱区地膜覆盖农田下垫面对东亚气候效应的数值模拟[J]. 干旱区研究, 2018, 35(2):143-153.
[18]
杨梅学, 姚檀栋, TOSHIO KOIKE. 藏北高原土壤温度的变化特征[J]. 山地学报, 2000, 18(1):13-17.
[19]
ROSSI E S, MENDES M C, JUNIOR O P, et al. Agronomics characteritcs of wheat cultivars in response to urea treaded with urease inhibitor in coverage[J]. Applied research & agrotechnology, 2014, 6(3):39-46.
[20]
高红贝, 邵明安. 干旱区降雨过程对土壤水分与温度变化影响研究[J]. 灌溉排水学报, 2011, 30(1):41-45.
[21]
郑伟, 刘娅楠, 孙怀琴, 等. 塔克拉玛干沙漠腹地浅层地温特征及其影响因子研究[J]. 内蒙古气象, 2019(3):27-31.
[22]
罗凤敏, 高君亮, 辛智鸣. 乌兰布和沙漠东北缘地温变化特征及其影响因子[J]. 中国沙漠, 2019, 39(1):179-186.
基于内蒙古磴口荒漠生态系统国家定位观测研究站监测数据,分析2014年1—12月不同土层的地温数据及同期气象数据,进而阐明乌兰布和沙漠东北缘地温变化特征。结果表明:(1)乌兰布和沙漠地温及气温具有显著的日变化特征,气温最高值与最低值出现时刻相对巴丹吉林沙漠提前2 h,相对东部地区滞后1 h;地温与气温季节变化特征一致,各季节地温最值出现时刻相对气温滞后1 h;(2)地温变化速率随着土壤深度的增加而减小,在土壤深度达到70 cm以后,地温全年在0℃以上;低于0℃的5 cm地温持续时间约为4个月;(3)地温与空气温度、太阳辐射变化趋势一致,地温相对太阳辐射及气温明显滞后。相关分析与逐步回归表明,对地温变化起决定作用的环境因子为空气温度、蒸发量、太阳总辐射、风速、空气相对湿度、降水。
[23]
强玉柱, 蒲金涌, 刘扬, 等. 天水市近50年浅层地温变化特征分析[J]. 中国农学通报 2013, 29(35):317-322.
[24]
管延龙, 王让会, 李成, 等. 天山北麓1963-2010年0cm最高与最低地表温度变化特征[J]. 干旱气象, 2015, 33(4):587-594.
基于天山北麓7个气象站1963~2010年逐月0 cm最高、最低地温资料,采用线性趋势分析、Mann-Kendall检验、Morlet小波等方法,分析了天山北麓地温变化特征。结果表明:(1)近48 a来,天山北麓0 cm最高地温以精河为高值中心,总体上呈西高东低的特征,最低地温以乌苏、乌鲁木齐为高值中心的中西部地区普遍较高;(2)0 cm地温呈显著上升趋势,最低地温增幅尤为显著,达0.87 ℃/10 a;(3)0 cm最低地温在2002年发生突变,而最高地温未出现突变;(4)0 cm地温异常年份主要发生在2006年之后,以偏暖为主。
[25]
缑倩倩, 李乔乔, 屈建军, 等. 荒漠-绿洲过渡带土壤温度变化分析[J]. 干旱区研究, 2019, 36(4):809-815.

基金

新疆气象局创新发展专项面上项目“双偏振雷达反演雨滴谱参数研究”(MS202322)
PDF(1798 KB)

Accesses

Citation

Detail

段落导航
相关文章

/