
外源赤霉素、氨基酸钙处理对‘明日见’柑橘裂果的影响
Effects of Exogenous Gibberellin and Calcium Amino Acid on Fruit Cracking of ‘Asumi’ Citrus
探索外源赤霉素与氨基酸钙对柑橘果实裂果的影响,为防止‘明日见’柑橘裂果提供理论依据和实践措施。以红橘为基础砧高换5年生‘明日见’柑橘为试验材料,选取生长势、负载量一致的27株树,分别在花后60、75、90 d进行外源赤霉素、氨基酸钙处理,从花后100 d开始采样,每隔15 d采样一次,共采样5次。对果皮细胞超微结构进行观察,对果实外观品质、裂果率、细胞壁物质含量、3种不同类型果胶含量(水溶性果胶、离子结合性果胶、共价结合型果胶)、半乳糖醛酸含量、纤维素和半纤维素含量、木质素含量进行测定,并利用方差分析进行综合评价。水溶性果胶含量随果实生长发育先升高后降低,裂果高峰期含量高于其他时期,且受赤霉素影响较大。离子结合性果胶、共价结合型果胶、纤维素含量随果实生长发育先降低后升高,裂果高峰期含量低于其他时期,离子结合性果胶含量变化受外源钙影响较大。不同处理在不同时期的半纤维素、木质素含量差异不显著。果皮中不同类型果胶的含量变化是‘明日见’裂果的主要因素,外源喷施赤霉素与氨基酸钙能显著降低裂果率。赤霉素与氨基酸钙通过影响果皮中不同类型的果胶含量增强抗裂果能力,赤霉素的处理效果优于外源钙,能更有效地防止‘明日见’裂果的发生。
The purpose of this study is to explore the effects of exogenous gibberellin and calcium amino acid on fruit cracking of ‘Asumi’, and provide theoretical basis and practical measures for the prevention of fruit cracking of citrus. Using 5-year-old ‘Asumi’ citrus with red orange as research material, 27 trees with the same growth potential and load were selected and treated with exogenous gibberellin and calcium amino acid at 60, 75 and 90 d after anthesis respectively. Samples were taken from 100 d after anthesis and once every 15 d, a total of 5 times. The fruit cracking rate, ultrastructure observation of pericarp cells, cell wall material content, water-soluble pectin content, ion binding pectin content, covalent binding pectin content, galacturonic acid content, cellulose, lignin content and fruit appearance quality were measured, compared and analyzed. The results showed that the content of water-soluble pectin increased at first and then decreased with the growth and development of fruit, and the content at the peak of fruit cracking was higher than that in other periods, and was greatly affected by gibberellin. The contents of ion-bound pectin, covalently bound pectin and cellulose decreased at first and then increased, and the contents at the peak of fruit cracking was lower than that in other periods, and the change of ion-bound pectin content was greatly affected by exogenous calcium. There was no significant difference in hemicellulose and lignin content among different treatments in different periods. The change of the content of different types of pectin in the pericarp was the main factor of fruit cracking of ‘Asumi’ citrus, and exogenous spraying gibberellin and calcium amino acid could significantly reduce the fruit cracking rate. Gibberellin and calcium amino acid can enhance fruit cracking resistance by affecting different types of pectin content in pericarp.
柑橘 / 裂果 / 赤霉素 / 外源钙 / 细胞壁 / 方差分析 {{custom_keyword}} /
citrus / fruit cracking / gibberellin / exogenous calcium / cell wall / analysis of variance {{custom_keyword}} /
[1] |
The breeding of new, high‐quality citrus cultivars depends on dependable information about the relationships of taxa within the tribe Citreae; therefore, it is important to have a well‐supported phylogeny of the relationships between species not only to advance breeding strategies, but also to advance conservation strategies for the wild taxa. The recent history of the systematics of Citrus (Rutaceae: Aurantioideae) and its allies, in the context of Rutaceae taxonomy as a whole, is reviewed. The most recent classification is tested using nine cpDNA sequence regions in representatives of all genera of the subfam. Aurantioideae (save Limnocitrus) and numerous species and hybrids referred to Citrus s.l. Aurantioideae are confirmed as monophyletic. Within Aurantioideae, tribe Clauseneae are not monophyletic unless Murraya s.s. and Merrillia are removed to Aurantieae. Within tribe Aurantieae, the three traditionally recognized subtribes are not monophyletic. Triphasiinae is not monophyletic unless Oxanthera is returned to Citrus (Citrinae). Balsamocitrinae is polyphyletic. Feroniella, traditionally considered allied closely to Limonia (=Feronia), is shown to be nested in Citrus. The proposed congenericity of Severinia and Atalantia is confirmed. The most recent circumscription of Citrus is strongly supported by this analysis, with hybrids appearing with their putative maternal parents. The genus was resolved into two clades, one comprising wild species from New Guinea, Australia, and New Caledonia (formerly Clymenia, Eremocitrus, Microcitrus, Oxanthera), but surprisingly also Citrus medica, traditionally believed to be native in India. The second clade is largely from the Asian mainland (including species formerly referred to Fortunella and Poncirus).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
单杨. 中国柑橘工业的现状、发展趋势与对策[J]. 中国食品学报, 2008, 8(1):1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李永杰, 金国强, 淳长品, 等. 柑橘果皮的发育特征及GA3的防裂效果[J]. 果树学报, 2021, 38(7):1092-1101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
阮晓, 王强, 周疆明, 等. 香梨的果表突起和落果裂果与果实中内源激素之间的关系(简报)[J]. 植物生理学通讯, 2001, 37(3):220-221.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Investigations on “natural” cuticular cracks were conducted on nectarine fruit [Prunus persica (L.) Batsch var. nucipersica (Suckow) C.K. Schneid.]. A method for quantifying the cuticular crack surface area on a whole fruit basis was proposed. By using a stratified sampling design, the spatial distribution of the cuticular cracks over three regions (stylar end, peduncle, and cheek), their morphology, and the estimation of the total proportion of cuticular cracks on the fruit were studied. These features were examined during fruit development and in response to several fruit growing conditions corresponding to various crop loads and irrigation regimes. Cuticular cracks on nectarine fruit occurred during the final rapid fruit growth stage. Larger fruit presented higher cuticular crack densities in the apical regions than in the cheek regions. Thin and larger cuticular cracks occurred continuously during fruit development. Cuticular cracks represented 10% to 12.5% of the fruit surface area for well irrigated or low crop load trees, whereas they covered less than 4.5% for the heavy crop load and water deficit treatments. Cheek regions largely contributed to the total cuticular crack surface area (>60%), regardless of the fruit growing conditions. After irrigation was restricted, cuticular crack development was limited. A positive relationship was established between the cuticular crack surface area per fruit surface area and the fruit fresh weight.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
马雯彦, 庞晓明, 续九如, 等. 果实裂果影响因子研究进展[J]. 华中农业大学学报, 2010, 29(6):798-804.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
郭中富. 柑橘秋季裂果的原因及防治措施[J]. 现代农业科技, 2016(12):122-123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
马小焕. 脐橙果皮内裂发生的解剖结构和矿质营养元素变化研究[D]. 重庆: 西南大学, 2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
刘欢. 枣果皮结构及细胞壁代谢酶活性与抗裂果关系的研究[D]. 阿拉尔: 塔里木大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
陈杰忠, 伍玲, 彭良志, 等. 柑桔果皮果胶甲酯酶活性与裂果关系的研究[J]. 中国南方果树, 1999, 4(3):3-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
杨德兴, 戴京晶. 猕猴桃衰老过程中果胶质和细胞壁超微结构的变化[J]. 园艺学报, 1993, 20(4):341-345.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
陈辉惶, 李建贵, 张俊, 等. 新疆红枣裂果机理研究进展[J]. 新疆农业科学, 2012, 49(6):1066-1072.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
陈继群, 刘丽贞, 陈杰, 等. 不同钙处理对脐橙裂果及其细胞壁酶活性的影响[J]. 华南农业大学学报, 2014, 35(6):29-32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
张峰, 李养义, 张晓东, 等. 硅钙肥对库尔勒香梨果实品质的影响[J]. 中国农学通报, 2020, 36(4):56-60.
为探讨硅、钙肥在库尔勒香梨上的施用效果,采用田间小区试验,研究施用果蔬钙肥和硅肥对库尔勒香梨果实品质的影响。结果表明:与对照相比,5个处理均提高了库尔勒香梨果实的单果重、硬度、Vc和可溶性固形物含量,除幼果期与膨大期喷施果蔬钙肥和硅肥外可滴定酸含量均低于对照,但影响较小。在各处理中,幼果期和膨大期树冠喷施果蔬钙肥,同时配合土施硅肥的处理对于提高果实单果重、硬度、Vc和可溶性固形物含量的效果最好,与对照相比,单果重、果实硬度、Vc和可溶性固形物含量分别增加了14.51%、10.97%、51.61%和8.05%,且与对照之间的差异均达到了显著水平。因此,施用果蔬钙肥和硅肥对于提高库尔勒香梨果实品质具有明显的促进作用,既能提高果品产量,又能改善果实品质。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
吴建阳, 何冰, 陈妹, 等. 果实裂果机理研究进展与展望[J]. 广东农业科学, 2017, 44(4):38-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
王秀. 蓝莓果实采后软化与细胞壁代谢关系研究[D]. 南京: 南京农业大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
曹健康. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007:176.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003:146.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
A nongravimetric acetyl bromide lignin (ABL) method was evaluated to quantify lignin concentration in a variety of plant materials. The traditional approach to lignin quantification required extraction of lignin with acidic dioxane and its isolation from each plant sample to construct a standard curve via spectrophotometric analysis. Lignin concentration was then measured in pre-extracted plant cell walls. However, this presented a methodological complexity because extraction and isolation procedures are lengthy and tedious, particularly if there are many samples involved. This work was targeted to simplify lignin quantification. Our hypothesis was that any lignin, regardless of its botanical origin, could be used to construct a standard curve for the purpose of determining lignin concentration in a variety of plants. To test our hypothesis, lignins were isolated from a range of diverse plants and, along with three commercial lignins, standard curves were built and compared among them. Slopes and intercepts derived from these standard curves were close enough to allow utilization of a mean extinction coefficient in the regression equation to estimate lignin concentration in any plant, independent of its botanical origin. Lignin quantification by use of a common regression equation obviates the steps of lignin extraction, isolation, and standard curve construction, which substantially expedites the ABL method. Acetyl bromide lignin method is a fast, convenient analytical procedure that may routinely be used to quantify lignin.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
古湘. 南丰蜜橘木质素代谢与化渣的关系研究[D]. 南昌: 江西农业大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
任国慧, 陶然, 文习成, 等. 重要果树果实裂果现象及防治措施的研究进展[J]. 植物生理学报, 2013, 49(4):324-330.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
马小焕, 彭良志, 淳长品, 等. 脐橙果皮内裂发生的解剖结构和矿质营养元素变化[J]. 园艺学报, 2011, 38(10):1857-1864.
以果皮内裂严重的和正常的枳砧‘纽荷尔’和‘卡拉卡拉’脐橙为材料,研究盛花后不同时期果皮厚度和果皮显微结构,以及果实和叶片N、P、K、Ca、Mg和S营养元素含量变化与果皮内裂的关系。结果表明,盛花后80 ~ 140 d果皮厚度下降,果皮厚度下降速率与内裂有关;盛花后80 d,两个品种内裂果园植株的果实海绵层细胞出现裂隙,盛花后140 d裂隙进一步扩大,在果皮横切面上肉眼可见裂口或小空洞,从果实外观可见陷痕;裂隙或小空洞的形成从解剖结构上可见细胞撕裂和细胞皱缩两种形式;两个品种在盛花后80、140及217 d,内裂果的果皮Ca含量均显著低于正常果,果肉Ca含量均低于正常果且多数达显著差异,N、P、K、Mg和S元素无明显变化规律;两个品种的内裂果园植株叶片Ca含量也均显著低于正常果园,而S含量显著高于正常果园,其余N、P、K和Mg元素无明显变化规律,显示Ca不足与果皮内裂有重要关系。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
王旭旭, 樊秀彩, 李傲, 等. 葡萄品种资源裂果性状调查与分析[J]. 园艺学报, 2016, 43(11):2099-2108.
选取252 个鲜食葡萄品种(111 个欧美杂种,141 个欧亚种),分别在转色期、成熟期、过熟期采集果实,通过清水浸泡试验,了解比较其裂果情况。结果表明,葡萄裂果症状有环裂、纵裂、纵环裂和龟裂等,龟裂只在欧亚种葡萄出现;欧亚种葡萄比欧美杂种葡萄裂果严重;成熟期裂果最严重;欧美杂种小果粒葡萄品种更容易裂果;果皮厚、果肉质地软的葡萄不易裂果。不同葡萄品种的裂果倾向性存在较大差异,通过研究清水浸泡后葡萄发生裂果的情况,对葡萄裂果有了初步认识,为葡萄品种选择及葡萄育种亲本选择提供一定理论支撑。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
曹一博, 孙帆, 刘亚静, 等. 枣果实组织结构及果皮中矿质元素含量对裂果的影响[J]. 果树学报, 2013, 30(4):621-626.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
王保明, 丁改秀, 王小原, 等. 枣果实裂果的组织结构及水势变化的原因[J]. 中国农业科学, 2013, 46(21):4558-4568.
【目的】阐明壶瓶枣发育过程中果皮组织结构和水势变化,完善枣裂果机理研究。【方法】以易裂品种——壶瓶枣(Ziziphus jujube Mill. cv. Huping)为试材,跟踪果实发育进程,分别采用石蜡切片、TUNEL细胞凋亡检测及常规生理生化技术,探讨果皮中细胞壁组成成分和解剖结构变化及细胞凋亡与裂果的关系。【结果】壶瓶枣裂果主要发生在半红期至全红期,而幼果期和膨大期不发生裂果。果实发育过程中,果皮中原果胶、纤维素含量降低,水溶性果胶含量增加;SOD、POD、CAT活性逐渐下降,细胞质膜相对透性增大。石蜡切片结果表明,果皮解剖结构随果实发育而发生明显的变化,半红期表皮和皮下层细胞明显皱缩。TUNEL检测表明,半红期和全红期果皮细胞存在细胞凋亡现象。壶瓶枣果肉吸水能力明显强于果皮,且在不同部位果肉之间存在水势梯度,形成了“外界—果皮—果肉”水分渗透系统。【结论】半红期壶瓶枣果皮细胞发生凋亡甚至死亡,细胞质膜相对透性增大;果皮外部自由水分在水势梯度的驱动下,大量进入果肉中,引起果肉细胞膨胀而导致裂果。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
吕明轩, 王敏, 陈艳丽, 等. 钙、硅、镁对小果型西瓜裂果及品质的影响[J]. 中国瓜菜, 2021, 34(9):56-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
杨泽恩. 番茄裂果相关指标筛选及基于果皮特征的裂果机理研究[D]. 南京: 南京农业大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
陆胜民, 金勇丰, 张耀洲, 等. 果实成熟过程中细胞壁组成的变化[J]. 植物生理学通讯, 2001, 11(3):246-249.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
陆胜民, 席玛芳, 张耀洲, 等. 梅果采后软化与细胞壁组分及其降解酶活性的变化[J]. 中国农业科学, 2003, 29(5):595-598.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
赖呈纯, 黄贤贵. 果实生长与果园土壤含水量的变化对‘茂谷柑’裂果的影响[J]. 福建农林大学学报(自然科学版), 2019, 48(4):434-439.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
陈苑虹, 李三玉, 董继新, 等. 玉环柚果实特性与裂果的关系[J]. 浙江大学学报(农业与生命科学版), 1999, 25(4):414-416.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
王庆江, 温险良, 贾彦丽, 等. 赞皇大枣幼树叶片光合特性的研究[J]. 河北农业大学学报, 2002, 5(25):120-121.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
李三玉, 陈苑虹, 吕均良, 等. 玉环柚果实内源激素含量与裂果关系的研究[J]. 科技通报, 1999, 21(3):7-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
叶正文, 叶兰香, 张学英, 等. 脐橙的裂果规律及赤霉素防裂效果[J]. 上海农业学报, 2002, 18(4):53-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |