不同环境下芝麻品质性状的遗传变异分析

崔向华, 周瑢, 徐桂真, 高德学, 唐雪辉, 张少泽, 梁俊超, 王林海

中国农学通报. 2023, 39(24): 43-49

PDF(1253 KB)
PDF(1253 KB)
中国农学通报 ›› 2023, Vol. 39 ›› Issue (24) : 43-49. DOI: 10.11924/j.issn.1000-6850.casb2022-0998
农学·农业基础科学

不同环境下芝麻品质性状的遗传变异分析

作者信息 +

Sesame Quality Traits in Different Environments: Genetic Variation Study

Author information +
History +

摘要

为了分析芝麻营养品质性状在不同生态环境下的变异特征,选用8个白芝麻品种,在全国13个试验点种植,应用高效液相色谱法(HPLC)和近红外光谱分析法(NIR)对其主要品质性状进行测定。结果表明,8个芝麻品种在13个试验点的平均含油率、油酸、亚油酸、棕榈酸、芝麻素和芝麻林素含量分别为55.43%、38.88%、46.16%、8.63%、4.56 mg/g和2.70 mg/g。含油率随着纬度的升高先逐渐升高然后降低,在襄阳试验点的含油率最高,平均为57.50%,且显著高于其他试验点;伊犁试验点芝麻素、芝麻林素平均含量最高,分别为5.58 mg/g和3.60 mg/g,其他试验点的芝麻素和芝麻林素含量总体表现为由北向南先升高再降低。说明襄阳适宜种植高含油率芝麻,伊犁适宜种植芝麻素和芝麻林素含量高的芝麻。

Abstract

To analyze the variations of sesame quality traits in different ecological environments, eight sesame varieties were planted in 13 experimental sites in China. The high performance liquid chromatography (HPLC) and near infrared spectrum (NIR) analysis were applied for quality evaluation. The results showed that the average contents of oil, oleic acid, linoleic acid, palmitic acid, sesamin and sesamolin of the 8 sesames were 55.43%, 38.88%, 46.16%, 8.63%, 4.56 mg/g and 2.70 mg/g, respectively. The oil content gradually increased and then decreased with the increase of latitude. Xiangyang site had the highest oil content, with the average of 57.50%, and it was significantly higher than those in other experimental sites. The average contents of sesamin and sesamolin in Ili site were the highest with the average of 5.58 mg/g and 3.60 mg/g, respectively. The sesamin and sesamolin contents in other experimental sites firstly increased and then decreased from north to south. It suggested that Xiangyang site was more suitable for planting sesame with high oil content, while Ili site was suitable for cultivating sesame with high sesamin and sesamolin contents.

关键词

芝麻 / 品质性状 / 含油率 / 木脂素 / 生态环境

Key words

sesame / quality traits / oil content / lignan / ecological environment

引用本文

导出引用
崔向华 , 周瑢 , 徐桂真 , 高德学 , 唐雪辉 , 张少泽 , 梁俊超 , 王林海. 不同环境下芝麻品质性状的遗传变异分析. 中国农学通报. 2023, 39(24): 43-49 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0998
CUI Xianghua , ZHOU Rong , XU Guizhen , GAO Dexue , TANG Xuehui , ZHANG Shaoze , LIANG Junchao , WANG Linhai. Sesame Quality Traits in Different Environments: Genetic Variation Study. Chinese Agricultural Science Bulletin. 2023, 39(24): 43-49 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0998

参考文献

[1]
DOROTHEA B, JACK R H. Evidence for cultivation of sesame in the ancient world[J]. Economic botany, 1986, 40(2):137-154.
[2]
罗自舒, 王志坚, 周王易, 等. 不同颜色芝麻营养品质性状遗传变异分析[J]. 植物遗传资源学报, 2023, 24(2):365-375.
[3]
王瑞元. 中国为全球芝麻产业的发展作出了重要贡献[J]. 中国油脂, 2019, 44(12):1-2.
[4]
WANG L H, ZHANG Y X, LI DH, et al. Gene expression profiles that shape high and low oil content sesames[J]. BMC genetics, 2019, 20:45.
Sesame (Sesamum indicum) can accumulate over 60% oil in its seed. However, low oil content genotypes with an oil content of less than 50% are also observed. To gain insights into how genes shape this variation, we examined 22 seed and carpel transcriptomes from 3 varieties of sesame with high and low oil content.A total of 34.6~52.2% of the sesame genes were expressed with a RPKM greater than 5 in the 22 tissue samples. The expressed gene numbers tended to decrease in the seed but fluctuated in the carpels from 10 to 30 days post-anthesis (DPA). Compared with that of the low oil content sesames, the high oil content sesame exhibited more positive gene expression during seed development. Typically, genes involved in lipid biosynthesis were enriched and could distinguish the high and low genotypes at 30 DPA, suggesting the pivotal role of seed oil biosynthesis in the later stages. Key homologous lipid genes that function in TAG biosynthesis, including those that encoded glycerol-3-phosphate acyltransferase (GPAT), acyl-CoA:diacylglycerol acyltransferase (DGAT), and phospholipid:diacylglycerol acyltransferase (PDAT), were strengthened asynchronously at different stages, but the lipid transfer protein (LTP)-encoding genes, including SIN_1019175, SIN_1019172 and SIN_1010009, usually were highlighted in the high oil content sesames. Furthermore, a list of 23 candidate genes was identified and predicted to be beneficial for higher oil content accumulation. Despite the different gene expression patterns between the seeds and carpels, the two tissues showed a cooperative relationship during seed development, and biological processes, such as transport, catabolic process and small molecule metabolic process, changed synchronously.The study elucidated the different expression profiles in high and low oil content sesames and revealed key stages and a list of candidate genes that shaped oil content variation. These findings will accelerate dissection of the genetic mechanism of sesame oil biosynthesis.
[5]
WANG L H, YU S, TONG C B, et al. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis[J]. Genome biology, 2014, 15:R39.
[6]
邵家威, 祁国栋, 张桂香, 等. 芝麻的营养与功能价值评价研究进展[J]. 粮油食品科技, 2019, 27,6.
[7]
UZUN B, ARSLAN C, FURAT S. Variation in fatty acid compositions, oil content and oil yield in a germplasm collection of sesame (Sesamum indicum L.)[J]. Journal of the American oil chemists' society, 2008, 85(12):1135-1142.
[8]
梅鸿献, 魏安池, 刘艳阳, 等. 芝麻种质资源芝麻素、蛋白质、脂肪含量变异及其相关分析[J]. 中国油脂, 2013,38, 4:87-90.
[9]
贾斌, 王允, 尹海燕, 等. 黑_白芝麻营养成分及品质的差异分析[J]. 河南农业科学, 2020, 49(5):69-74.
为了明确黑、白芝麻品种的品质性状及营养成分差异,选取317个国内芝麻种质材料,对其含油量以及蛋白质、脂肪酸、氨基酸、芝麻素、芝麻林素等主要品质成分含量进行测定,并根据种皮颜色对黑、白芝麻品种的品质指标差异及其相关性进行初步分析。结果表明,不同芝麻种质脂肪酸及氨基酸组分含量有很大差异,黑、白芝麻中含油量以及蛋白质、芝麻素、芝麻林素含量均有显著差异,其中白芝麻中芝麻素和芝麻林素含量均显著高于黑芝麻,黑芝麻中芝麻素含量与芝麻林素含量的相关性高于白芝麻。黑、白芝麻中氨基酸含量均以精氨酸和谷氨酸含量较高,且黑芝麻中异亮氨酸、亮氨酸、苯丙氨酸、赖氨酸含量显著高于白芝麻。黑、白芝麻中含油量与芝麻素含量均呈极显著正相关,与花生酸含量呈极显著负相关。作为主要饱和脂肪酸,芝麻棕榈酸含量与油酸、花生酸含量呈显著正相关,而与亚油酸含量呈极显著负相关。不同种皮颜色芝麻品质指标有很大差异,黑、白芝麻中含油量与芝麻素含量呈极显著正相关关系,据此可实现高含油量、高芝麻素的同步改良,推动高含油量、高芝麻素含量芝麻新品种的培育。
[10]
周瑢, 许方涛, 盛晨, 等. 芝麻含油量及脂肪酸含量QTL分析[J]. 中国油料作物学报, 2021, 43(6):1042-1051.
[11]
KIM K S, LEE J R, LEE J S. Determination of sesamin and sesamolin in sesame (Sesamum indicum L.) seeds using UV spectrophotometer and HPLC[J]. Korea journal crop sciences, 2006, 51(1):95-100.
[12]
RANGKADILOK N, PHOLPHANA N, MAHIDOL C, et al. Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand[J]. Food chemistry, 2010, 122(3):724-730.
[13]
WANG L, ZHANG Y, LI P, et al. HPLC analysis of seed sesamin and sesamolin variation in a sesame germplasm collection in China[J]. Journal of the American oil chemists' society, 2012, 89(6):1011-1020.
[14]
许方涛, 周瑢, 崔向华, 等. 芝麻籽粒芝麻素和芝麻林素含量变异及杂种优势分析[J]. 南方农业学报, 2020, 51(10):2420-2428.
[15]
KADKHODAIE A, RAZMJOO J, ZAHEDI M, et al. Oil content and composition of sesame (Sesamum indicum L.) genotypes as affected by irrigation regimes[J]. Journal of the American oil chemists' society 2014, 91(10):1737-1744.
[16]
F BARAKI, GEBRELIBANOS. Genotype environment interaction and stability of oil content of sesame (Sesamum indicum L.) genotypes in Northern Ethiopia[J]. Journal of cereals and oilseeds, 2018, 9(3):20-28.
[17]
高锦鸿, 梅鸿献, 刘艳阳, 等. 产地及籽粒外观品质对芝麻木脂素含量的影响[J]. 华北农学报, 2015, 30(2):191-197.
为了研究产地及籽粒外观对芝麻木酚素含量的影响,为芝麻品质遗传改良及高木酚素芝麻商品生产提供理论依据。从3 800余份芝麻种质资源中选取212份代表性资源,分别在4个不同生态区种植,测定各样品芝麻素和芝麻林素含量;探讨芝麻不同产地、千粒质量及种皮颜色与芝麻素和芝麻林素含量的关系。结果表明,芝麻素和芝麻林素各试点含量均值分别为3.52,3.61,3.11,2.43,1.94,1.93,1.78,1.62 mg/g;芝麻木酚素含量存在随纬度升高而增加的趋势;芝麻籽粒颜色L值与芝麻素含量极显著正相关(r=0.296 6, ɑ =0.01),与芝麻林素含量相关不显著;千粒质量与芝麻素含量极显著负相关(r=-0.260 3, ɑ =0.01),与芝麻林素含量极显著正相关(r=0.227 9, ɑ =0.01)。芝麻素和芝麻林素含量随产地纬度的升高而增加;随着种皮颜色变深,芝麻素含量逐渐降低;随着千粒质量增加,芝麻素含量逐渐降低,芝麻林素含量不断增加。
[18]
SHIM K, KANG C, KIM D, et al. Genotype-by-environment interaction in yield of sesame[J]. Korean journal of crop science, 2003, 48(2):65-67.
[19]
MALEK M A, DAS M L, RAHMAN A. Genotype × environment interaction in sesame (Sesamum indicum L.)[J]. Bangladesh journal of training and development, 2001, 14(1/2):133-137.
[20]
OKELLO-ANYANGA W, RUBAIHAYO P, GIBSON P, et al. Genotype by environment interaction in sesame (Sesamum indicum L.) cultivars in Uganda[J]. African journal of plant science, 2016, 10(10):189-202.
[21]
FISEHA B, GEBRELIBANOS G. Genotype environment interaction and stability of oil content of sesame (Sesamum indicum L.) genotypes in Northern Ethiopia[J]. Journal of cereals and oilseeds, 2018, 9(3):20-28.
[22]
BAUD S, LEPINIEC L. Physiological and developmental regulation of seed oil production[J]. Prog lipid res, 2010, 49(3):235-249.
Triacylglycerols (TAGs) constitute a highly efficient form of energy storage. In seeds of angiosperms, they can act as a reserve of carbon and energy allowing to fuel post-germinative seedling growth until photosynthesis becomes effective. They also constitute the economic value of seeds in many crops. In the past years, extensive tools allowing the molecular dissection of plant metabolism have been developed together with analytical and cytological procedures adapted for seed material. These tools have allowed gaining a comprehensive overview of the metabolic pathways leading to TAG synthesis. They have also unravelled factors limiting oil production such as metabolic bottlenecks and light or oxygen availability in seed tissues. Beyond these physiological aspects, accumulation of TAGs is developmentally regulated in seeds. The oil biosynthetic process is initiated at the onset of the maturation phase, once embryo morphogenesis is achieved. A wealth of recent studies has shed new lights on the intricate regulatory network controlling the seed maturation phase, including reserve deposition. This network involves a set of regulated transcription factors that crosstalk with physiological signaling. The knowledge thus acquired paves the way for the genetic engineering of oilseed crops dedicated to food applications or green chemistry.
[23]
ZENEBE M, HUSSIEN M. Study on genotype × environment interaction of oil content in sesame (Sesamum indicum L.)[J]. Middle east journal of scientific research, 2009, 4(2):100-104.
[24]
甄志高, 孟祥锋, 徐新福, 等. 气象条件对夏芝麻蛋白质和脂肪含量的影响[J]. 陕西农业科学, 2004, 5:43-44.
[25]
魏广伟, 阳慧怡, 王敏, 等. 基因型和环境互作对黑芝麻木脂素的影响[J]. 中国油料作物学报, 2023, doi: 10.19802/j.issn.1007-9084.2022177.
致谢

本研究过程中还得到湖南省农业科学院作物研究所何录秋研究员、伊犁州农业科学院陈晓露博士、桂林市农业科学院张宗急研究员、贵阳市农业科学院魏忠芬研究员、江西省红壤研究所肖国滨研究员、山东省棉花研究中心宫慧慧老师等协助,在此一并致谢。

基金

现代农业产业技术体系建设专项“国家特色油料产业技术体系”(CARS-14)
农业农村部油料作物生物学与遗传育种重点实验室开放课题“黑芝麻种皮颜色主效调控基因鉴定与代谢通路分析”(KF2022002)
PDF(1253 KB)

文章所在专题

棉花

60

Accesses

0

Citation

Detail

段落导航
相关文章

/