
云南山地胶园土壤有机质高光谱估算
Hyper-spectral Estimation for Soil Organic Matter in Yunnan Mountainous Rubber Plantations
有机质是反映橡胶园土壤养分状况的重要指标,其含量快速、高精度估算模型的建立,可以更好地指导胶园精细化生产管理。本研究从景洪市东风农场采集到225个橡胶园土壤样品,并获取土壤样品的光谱反射率和有机质含量数据,对光谱反射率进行噪声波段去除和重采样后,应用3种方法[log(1/R)、MSC、SNV]对重采样后的光谱反射率R进行光谱变换处理,然后对光谱反射率R以及3种变换形式光谱数据进行SG平滑或导数变换模式优选,得到最佳的光谱变换模式为log(1/R)结合SG平滑变换,其中,SG平滑变换模式为导数阶数0、SG滤波窗口5、多项式次数2或3。基于最佳光谱变换光谱数据与土壤有机质含量数据,选择CARS、SPA、CARS-SPA等3种方法提取特征波长,并采用MLR、PLSR和SVR 3种方法构建土壤有机质高光谱估算模型。结果显示,CARS-SVR模型估算精度最高,R2、RMSE、RPD分别为0.897、3.990 g/kg、2.947。建立的云南山地胶园土壤有机质含量高光谱最优估算模型,RPD位于2.5~3.0之间,具有很好的估算能力。
Organic matter is an important indicator of soil nutrient status in rubber plantations. The establishment of a fast and highly precise estimation model for organic matter content can better guide the fine production management of rubber plantations. In this study, 225 rubber plantation soil samples were collected from Dongfeng Farm in Jinghong City, and the spectral reflectance and organic matter content data of the soil samples were obtained. After noise band removal and resampling of the spectral reflectance, three methods [log(1/R), MSC and SNV] were applied to perform spectral transformation processing on resampled spectral reflectance R, and then SG smoothing or derivative transformation modes were used to optimize the spectral reflectance R and the spectral data of three transform forms. The best spectral transformation mode was obtained as log(1/R) combined with SG smoothing transformation. The SG smoothing transformation mode had the derivative order, SG filtering window, and polynomial degree of 0, 5, and 2 or 3, respectively. Based on the best spectral transformation data and soil organic matter content data, three methods including CARS, SPA and CARS-SPA were selected to extract characteristic wavelength, and the hyper-spectral estimation model for soil organic matter was constructed by MLR, PLSR and SVR. The results showed that the estimation accuracy of CARS-SVR model was the highest. The R2, RMSE and RPD were respectively 0.897, 3.990 g/kg and 2.947. Therefore, the established hyper-spectral optimal estimation model for soil organic matter content in Yunnan mountainous rubber plantations, with RPD between 2.5 and 3.0, has good estimation ability.
橡胶园 / 土壤有机质 / 高光谱 / 竞争适应重加权采样 / 支持向量回归 {{custom_keyword}} /
rubber plantation / soil organic matter / hyper-spectral / competitive adaptive reweighted sampling / support vector regression {{custom_keyword}} /
[1] |
李维锐, 赵国祥, 候丹. 云南天然橡胶产业高质量发展对策[J]. 热带农业科技, 2022, 45(3):1-5,14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
陈桂良, 王家银, 黎小清, 等. 江城橡胶公司橡胶园土壤养分时空变异特征分析[J]. 西南农业学报, 2017, 30(1):134-140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
黎小清, 余凌翔, 李春丽, 等. 云南东风农场橡胶园土壤养分空间分布特征[J]. 西南农业学报, 2015, 28(1):292-298.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
杨丽萍, 李春丽, 黎小清, 等. 西双版纳东风农场近20年橡胶园养分变化观察[J]. 热带农业科技, 2015, 38(1):1-4.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
杨春霞, 许木果, 刘忠妹, 等. 云南山地胶园土壤肥力空间变化特征[J]. 中国土壤与肥料, 2022(2):17-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
董豪, 茶正早, 张翔, 等. 连续多代次种植橡胶树对土壤团聚体及土壤有机碳的影响[J]. 热带作物学报, 2021, 42(12):3664-3670.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
余贵连, 吴敏, 韦家少, 等. 海南山地橡胶园土壤养分流失特性研究[J]. 广东农业科学, 2009(5):83-85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
李春丽, 严世孝. 西双版纳橡胶园养分变化[J]. 云南热作科技, 2001, 24(1):1-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
彭杰, 周清, 张杨珠, 等. 有机质对土壤光谱特性的影响研究[J]. 土壤学报, 2013, 50(3):517-524.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
徐彬彬, 戴昌达. 南疆土壤光谱反射特性与有机质含量的相关分析[J]. 科学通报, 1980(6):282-284.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
沙晋明, 陈鹏程, 陈松林. 土壤有机质光谱响应特性研究[J]. 水土保持研究, 2003(2):21-24+54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
何挺, 王静, 林宗坚, 等. 土壤有机质光谱特征研究[J]. 武汉大学学报(信息科学版), 2006(11):975-979.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
王淼, 解宪丽, 周睿, 等. 基于可见光-近红外漫反射光谱的红壤有机质预测及其最优波段选择[J]. 土壤学报, 2011, 48(5):1083-1089.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
沈润平, 丁国香, 魏国栓, 等. 基于人工神经网络的土壤有机质含量高光谱反演[J]. 土壤学报, 2009, 46(3):391-397.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
沈强, 张世文, 夏沙沙, 等. 基于支持向量机的土壤有机质高光谱反演[J]. 安徽理工大学学报(自然科学版), 2019, 39(4):39-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
史舟, 王乾龙, 彭杰, 等. 中国主要土壤高光谱反射特性分类与有机质光谱预测模型[J]. 中国科学:地球科学, 2014, 44(5):978-988.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3):453-460.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
聂哲, 李秀芬, 吕家欣, 等. 东北典型黑土区表层土壤有机质含量高光谱反演研究[J]. 土壤通报, 2019, 50(6):1285-1293.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
周倩倩, 丁建丽, 唐梦迎, 等. 干旱区典型绿洲土壤有机质的反演及影响因素研究[J]. 土壤学报, 2018, 55(2):313-324.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
方少文, 杨梅花, 赵小敏, 等. 红壤区土壤有机质光谱特征与定量估算——以江西省吉安县为例[J]. 土壤学报, 2014, 51(5):1003-1010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
王婷, 刘振华, 彭一平, 等. 华南地区土壤有机质含量高光谱反演[J]. 江苏农业学报, 2020, 36(2):350-357.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
韩兆迎, 朱西存, 刘庆, 等. 黄河三角洲土壤有机质含量的高光谱反演[J]. 植物营养与肥料学报, 2014, 20(6):1545-1552.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
中华人民共和国农业部. 土壤检测第6部分:土壤有机质的测定,NY/T 1121.6—2006[S]. 北京: 中国农业出版社, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
于雷, 朱亚星, 洪永胜, 等. 高光谱技术结合CARS算法预测土壤水分含量[J]. 农业工程学报, 2016, 32(22):138-145.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
朱亚星, 于雷, 洪永胜, 等. 土壤有机质高光谱特征与波长变量优选方法[J]. 中国农业科学, 2017, 50(22):4325-4337.
【目的】探究土壤有机质的高光谱特征及响应规律,优选土壤有机质的敏感波长,降低土壤有机质高光谱估测模型复杂度,提高模型稳健性,为利用高光谱技术对农田土壤肥力的定量监测提供理论支撑。【方法】采集江汉平原潮土土样130个,将其中40个样本作为训练集,测量其去有机质前、后的土壤有机质含量及光谱数据,计算差值及变化率,分析土壤有机质含量变化对光谱特征的影响,结合无信息变量消除(uninformative variables elimination,UVE)、竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)变量优选方法确定土壤有机质敏感波长;采用45个建模集样本,基于偏最小二乘回归(partial Least Squares Regression,PLSR)和反向传播神经网络(back propagation neural network,BPNN)建立土壤有机质含量的估算模型;利用45个验证集样本检验敏感波长对同类土壤的适用性。【结果】通过有机质去除试验,供试土壤的平均光谱反射率在全波段均有所增加,在可见光波段变化率高于近红外波段;比较UVE、CARS、UVE-CARS、CARS-UVE这4种变量优选方法,得到最佳变量优选方法为UVE-CARS,该方法从2001个波长变量中优选得到84个变量作为土壤有机质的敏感波长,分布于561—721、1 920—2 280 nm波段覆盖范围;基于敏感波长的PLSR、BPNN模型性能均优于全波段模型,其中,基于敏感波长的BPNN模型的估测能力高于PLSR,模型验证集R<sup>2</sup>、RMSE、RPD、MAE、MRE值分别为0.74、1.33 g·kg<sup>-1</sup>、2.02、1.04 g·kg<sup>-1</sup>、6.2%,可实现土壤有机质含量的有效估测。【结论】通过训练集获得的土壤有机质敏感波长,能够实现对该试验区同种土壤类型样本土壤有机质含量的有效估测;利用去有机质试验结合变量优选方法确定的敏感波长建模,不仅将输入波长压缩至全波段波长数目的4.2 %,而且提升了模型估测精度,降低了变量维度和模型复杂度,为快速准确评估农田土壤有机质含量提供了新途径。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
陈斌, 孟祥龙, 王豪. 连续投影算法在近红外光谱校正模型优化中的应用[J]. 分析测试学报, 2007(1):66-69.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
吴杰, 李创锴, 陈文骏, 等. 多元线性回归提高激光诱导荧光辅助激光诱导击穿光谱技术的准确度[J]. 光谱学与光谱分析, 2022, 42(3):795-801.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报, 2015, 31(14):103-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
邓念武, 徐晖. 单因变量的偏最小二乘回归模型及其应用[J]. 武汉大学学报(工学版), 2001, 34(2):14-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
杨洁, 郑宁, 刘董, 等. 基于遗传算法的SVM带权特征和模型参数优化[J]. 计算机仿真, 2008, 25(9):115-117,158.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
谭琨, 张倩倩, 曹茜, 等. 基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演[J]. 地球科学(中国地质大学学报), 2015, 40(8):1339-1345.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
中国国家标准化管理委员会. 橡胶树叶片营养诊断技术规程,GB/T 29570—2013[S]. 北京: 中国标准出版社, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
By employing the simple but effective principle 'survival of the fittest' on which Darwin's Evolution Theory is based, a novel strategy for selecting an optimal combination of key wavelengths of multi-component spectral data, named competitive adaptive reweighted sampling (CARS), is developed. Key wavelengths are defined as the wavelengths with large absolute coefficients in a multivariate linear regression model, such as partial least squares (PLS). In the present work, the absolute values of regression coefficients of PLS model are used as an index for evaluating the importance of each wavelength. Then, based on the importance level of each wavelength, CARS sequentially selects N subsets of wavelengths from N Monte Carlo (MC) sampling runs in an iterative and competitive manner. In each sampling run, a fixed ratio (e.g. 80%) of samples is first randomly selected to establish a calibration model. Next, based on the regression coefficients, a two-step procedure including exponentially decreasing function (EDF) based enforced wavelength selection and adaptive reweighted sampling (ARS) based competitive wavelength selection is adopted to select the key wavelengths. Finally, cross validation (CV) is applied to choose the subset with the lowest root mean square error of CV (RMSECV). The performance of the proposed procedure is evaluated using one simulated dataset together with one near infrared dataset of two properties. The results reveal an outstanding characteristic of CARS that it can usually locate an optimal combination of some key wavelengths which are interpretable to the chemical property of interest. Additionally, our study shows that better prediction is obtained by CARS when compared to full spectrum PLS modeling, Monte Carlo uninformative variable elimination (MC-UVE) and moving window partial least squares regression (MWPLSR).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
王涛, 喻彩丽, 姚娜, 等. MLR和PLSR的沙壤土盐分含量光谱检测对比研究[J]. 干旱区地理, 2018, 41(6):1295-1302.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |