硫酸铜和过氧化钙对海水及沉积物磷赋存形态的影响

黄桂芳, 魏祥涛, 李林蔚, 梁介宁, 白伟浩, 葛长字

中国农学通报. 2023, 39(13): 79-86

PDF(1243 KB)
PDF(1243 KB)
中国农学通报 ›› 2023, Vol. 39 ›› Issue (13) : 79-86. DOI: 10.11924/j.issn.1000-6850.casb2022-0842
资源·环境·生态·土壤·气象

硫酸铜和过氧化钙对海水及沉积物磷赋存形态的影响

作者信息 +

Effects of CuSO4 and CaO2 on the Forms of Phosphorus in Seawater and Sediments

Author information +
History +

摘要

生源要素磷的生态功能受其赋存形态影响,金属阳离子和DO影响其赋存形态转化,故推断渔药CuSO4和CaO2影响磷的赋存形态。为验证这一假说,分别在充气和不充气的条件下将海水和沉积物分别暴露于浓度为0、0.35、0.70、1.05 mg/L的CuSO4和浓度为0、5.00、35.00、50.00 mg/L的CaO2中,21 d后测定上覆海水和间隙水的总磷(TP)、活性磷酸盐(IP)浓度,沉积物中的总磷(TP)、盐酸可浸取态磷(HCl-P)、可交换态磷(Ex-P)含量。结果表明:充气时,CuSO4降低上覆水IP浓度和沉积物TP含量,增加沉积物Ex-P含量;不充气时,CuSO4降低上覆水TP浓度和沉积物TP、Ex-P含量,增加间隙水IP浓度;充气时,过氧化钙降低上覆水IP、TP浓度,增加沉积物HCl-P和Ex-P含量;不充气时,过氧化钙降低上覆水TP浓度,增加间隙水IP浓度和沉积物Ex-P含量。因此,CuSO4和CaO2将水体中磷封存于沉积物,有降低水体IP的潜力。

Abstract

The ecological function of biogenic element phosphorus is affected by its forms, and metal cations and DO affect its forms transformation. It is inferred that the fish drugs CuSO4 and CaO2 affect the phosphorus forms. To test this hypothesis, seawater and sediments were exposed to CuSO4 at concentrations of 0, 0.35, 0.70 and 1.05 mg/L, and CaO2 at concentrations of 0, 5.00, 35.00 and 50.00 mg/L respectively under aerated and unaerated conditions. After 21 days, the concentrations of total phosphorus (TP), reactive phosphate (IP) in seawater and the content of total phosphorus (TP), hydrochloric acid leachable phosphorus (HCl-P) and exchangeable phosphorus (Ex-P) in sediments were determined. The results showed that: under aeration, CuSO4 reduced the IP concentration of overlying water and sediment TP content, and increased the sediment Ex-P content. Without aeration, CuSO4 reduced the TP concentration and the sediment TP and Ex-P, and increased the IP concentration of gap water. Under aeration, calcium peroxide reduced the overlying IP and TP concentration, and increased the sediment HCl-P and Ex-P. Without aeration, calcium peroxide reduced the overlying TP concentration, and increased the gap water IP concentration and sediment Ex-P content. Thus, CuSO4 and CaO2 sequester the phosphorus in water body in sediments, and both of them have the potential to reduce IP in water body.

关键词

过氧化钙 / 可交换态磷 / 硫酸铜 / 盐酸可浸取态磷 / 总磷

Key words

calcium peroxide / exchangeable phosphorus / copper sulfate / hydrochloric acid leachable phosphorus / total phosphorus

引用本文

导出引用
黄桂芳 , 魏祥涛 , 李林蔚 , 梁介宁 , 白伟浩 , 葛长字. 硫酸铜和过氧化钙对海水及沉积物磷赋存形态的影响. 中国农学通报. 2023, 39(13): 79-86 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0842
HUANG Guifang , WEI Xiangtao , LI Linwei , LIANG Jiening , BAI Weihao , GE Changzi. Effects of CuSO4 and CaO2 on the Forms of Phosphorus in Seawater and Sediments. Chinese Agricultural Science Bulletin. 2023, 39(13): 79-86 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0842

参考文献

[1]
ZHAO Q H, WANG J, WANG J J, et al. Seasonal dependency of controlling factors on the phytoplankton production in Taihu Lake, China[J]. Journal of environmental sciences, 2018, 76:278-288.
[2]
李惠英, 朱永官. 不同磷锌施肥量对大麦产量及其吸收的影响[J]. 中国生态农业学报, 2002, 4:55-57.
[3]
KE S, ZHANG P, OU S J, et al. Spatiotemporal nutrient patterns, composition, and implications for eutrophication mitigation in the Pearl River Estuary, China[J]. Estuarine, coastal and shelf science, 2022, 266:107749.
[4]
YANG B, LIN H, BARTLETT S L, et al. Partitioning and transformation of organic and inorganic phosphorus among dissolved, colloidal and particulate phases in a hypereutrophic freshwater estuary[J]. Water research, 2021, 196:117025.
[5]
罗民波, 刘峰. 南黄海浒苔绿潮的发生过程及关键要素研究进展[J]. 海洋渔业, 2015, 37(6):570-574.
[6]
MAKI A W, PORCELLA D B, WENDT R H. The impact of detergent phosphorus bans on receiving water quality[J]. Water research, 1984, 18(7):893-903.
[7]
郭卫东, 章小明, 杨逸萍, 等. 中国近岸海域潜在性富营养化程度的评价[J]. 台湾海峡, 1998, 17(1):64-70.
[8]
SONDERGAARD M, JENSEN J P, JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506(1-3):135-145.
[9]
李晓瞳, 刘泽辉, 张菊, 等. 东平湖沉积物中磷的赋存形态及其空间分布特征[J]. 土壤通报, 2021, 52(1):62-67.
[10]
朱广伟, 秦伯强, 高光, 等. 长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J]. 环境科学学报, 2004, 3:381-388.
[11]
MIAO J, HU J W, HUANG X F, et al. Phosphorus speciation and vertical variantion in sediments from Lake Baihu[J]. Applied mechanics and materials, 2014, 3517:399-403.
[12]
侯诒然, 高勤峰, 董双林, 等. 不同规格刺参的生物扰动作用对沉积物中磷赋存形态及吸附特性的影响[J]. 中国海洋大学学报, 2017, 47(9):36-45.
[13]
刘峰, 高云芳, 王立欣, 等. 水域沉积物氮磷赋存形态和分布的研究进展[J]. 水生态学杂志, 2011, 32(4):137-144.
[14]
叶金明, 杨显祥, 姜增华, 等. 国内渔药使用现状、问题及合理化建议[J]. 中国水产, 2007, 5:65-69.
[15]
GE C Z, CHAI Y C, WANG H Q, et al. Ocean acidification: One potential driver of phosphorus eutrophication[J]. Marine pollution bulletin, 2017, 115:149-153.
Harmful algal blooms which may be limited by phosphorus outbreak increases currently and ocean acidification worsens presently, which implies that ocean acidification might lead to phosphorus eutrophication. To verify the hypothesis, oxic sediments were exposed to seawater with different pH 30days. If pH was 8.1 and 7.7, the total phosphorus (TP) content in sediments was 1.52±0.50 and 1.29±0.40mg/g. The inorganic phosphorus (IP) content in sediments exposed to seawater with pH8.1 and 7.7 was 1.39±0.10 and 1.06±0.20mg/g, respectively. The exchangeable phosphorus (Ex-P) content in sediments was 4.40±0.45 and 2.82±0.15μg/g, if seawater pH was 8.1 and 7.7. Ex-P and IP contents in oxic sediments were reduced by ocean acidification significantly (p<5%). The reduced phosphorus in sediments diffused into water, which implied that ocean acidification was one potential facilitator of phosphorus eutrophication in oxic conditions.Copyright © 2016 Elsevier Ltd. All rights reserved.
[16]
国家质量监督局. 海洋调查规范第4部分:海水化学要素调查[S]. 北京: 中国标准出版社, 2007.
[17]
黄正, SAKADEVAN K, BAVOR J. Cd2+、Cu2+和Zn2+对人工湿地反硝化作用的影响[J]. 环境科学, 2000, 21(4):110-112.
[18]
刘敏琴. 阳离子对溶解性有机质在水铁矿上吸附分馏的影响[D]. 广州: 华南理工大学, 2020.
[19]
林进南. 利用硫酸亚铁去除污水中的磷酸盐[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[20]
张大庚, 贺云龙, 栗杰, 等. 施磷肥对土壤中Ca2+吸持特征的影响[J]. 水土保持学报, 2012, 26(6):229-233.
[21]
卢少勇, 金相灿, 余刚. 人工湿地的磷去除机理[J]. 生态环境, 2006, 15(2):391-396.
[22]
刘小宁. 金属氧化物-炭材料的制备及其去除水相中磷酸盐的性能和机理研究[D]. 北京: 中国农业科学院, 2020.
[23]
梁继东, 周启星, 孙铁珩. 人工湿地污水处理系统研究及性能改进分析[J]. 生态学杂志, 2003, 22(2):49-55.
[24]
缪柳, 洪俊明, 林冰. 络合硫酸铜除藻剂应急治理水华对水质及鱼类的影响[J]. 生态与农村环境学报, 2011, 27(5):63-66.
[25]
郑友平, 林亲铁, 姜洁如, 等. 过氧化钙修复有机污染土壤的研究进展[J]. 土壤通报, 2017, 48(5):1275-1280.
[26]
崔键, 杜易, 丁程成, 等. 中国湖泊水体磷的赋存形态及污染治理措施进展[J]. 生态环境学报, 2022, 31(3):621-633.
磷是驱动湖泊发生稳态转换的重要环境因子,也是当前中国湖泊污染的主要因子,探究湖水磷赋存形态和生态修复模式是湖泊生态治理和管理的关键。近30年来,中国在水体磷治理方面积累了丰富的经验,并取得了显著的成效,但目前磷仍是湖泊污染中的首要污染物,其治理仍任重道远。文章基于国内外文献,统计和整理了中国湖泊水体磷的赋存形态,梳理了水体磷污染治理的单项技术与联合技术,并对技术进展进行了分类评述。结果发现,(1)中国湖泊水体磷的研究主要集中在总磷浓度及沉积物无机磷形态方面,而水体磷形态、沉积物有机磷形态及其与水体间的转化机制和PH<sub>3</sub>产生机制仍需进一步探明。(2)适用于湖泊水体磷去除的方法包括物理、化学和生物-生态法,而生物-生态法为当前湖泊水体磷治理的主导技术而被广泛应用,在湖泊修复和水生态构建上发挥着重要的作用;然而技术仍存在基质和外来动植物等引发的二次生态风险,且相关研究多集中在磷去除效果及基质吸附机制上,而对生物特别是植物与微生物的作用机制不够深入,工程植物资源化利用开发路径仍需深化。最后,文章指明今后湖泊磷治理技术研发的方向和待攻关的湖泊水体有机磷形态的转化机制、水生植物-微生物互作机制、PH<sub>3</sub>产生机制及工程植物残体的高效资源化利用等关键科学问题,旨在为中国湖泊生态安全管控和美丽河湖建设提供参考。
[27]
郭志勇, 李晓晨, 王超, 等. pH值对玄武湖沉积物中磷的释放及形态分布的影响[J]. 农业环境科学学报, 2007(3):873-877.
[28]
葛长字, 曹禹墨, 柳文爽, 等. 外源性钙对沉积物中生物活性磷赋存形态的影响[J]. 中国农学通报, 2019, 35(3):101-105.
为了验证外源性Ca2+影响沉积物中制约初级生产的生物活性磷的赋存形态的科学假说,在充气的条件下,将沉积物暴露于不同浓度的外源性Ca2+ 30天,测定并分析其生物活性磷的赋存形态的差异。浓度0、50、200、500 mg/L的外源性Ca2+暴露下的表层沉积物Ex-P含量为0.08&plusmn;0.02、0.05&plusmn;0.00、0.05&plusmn;0.01、0.06&plusmn;0.01 μmol/g,50 mg/L的外源性Ca2+暴露下的表层沉积物Ex-P含量低于0 mg/L的外源性Ca2+暴露下的(P&lt;0.05);相同浓度外源性Ca2+暴露下的表层沉积物IP含量为0.37&plusmn;0.10、0.46&plusmn;0.16、0.41&plusmn;0.06和0.69&plusmn;0.05 μmol/g,0 mg/L的外源性Ca2+暴露下的表层沉积物的IP含量低于500 mg/L的外源性Ca2+暴露下的(P&lt;0.05);底层沉积物Ex-P和IP含量不受外源性Ca2+的影响。故外源性Ca2+影响表层沉积物中生物活性磷含量,对沉积物Ex-P含量有双重阈值作用,并可将水体中的磷转化为可以缓释的沉积物磷。
[29]
RYDIN E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water research, 2000, 34(7):2037-2042.
[30]
安敏, 文威, 孙淑娟, 等. pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响[J]. 环境科学学报, 2009, 29(12):2616-2622.
[31]
李楠, 单保庆, 张洪, 等. 沉积物中有机磷在pH和温度影响下的矿化机制[J]. 环境科学, 2011, 32(4):1008-1014.
[32]
SONG L, MARSH T L, VOICE T C, et al. Loss of seasonal variability in a lake resulting from copper sulfate algaecide treatment[J]. Physics and chemistry of the earth, 2011, 36:430-435.
[33]
HANSON M J, STEFAN H G. Side effects of 58 years of copper sulfate treatment on the fairmont lakes, Minnesota[J]. Water resources bulletin, 1984, 20:889-900.
[34]
HULLEBUSCH E V, DELUCHAT V, CHAZAL P M, et al. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part II. Case of copper sulfate[J]. Environmental pollution, 2002, 120:627-634.
The appearance of cyanobacteria ( > 10 colony per ml) was not prevented after alum treatment. In order to prevent cyanobacteria efflorescences in a small shallow polymictic lake (Courtille, France), copper sulfate was applied. Treatment level was 63 microg 1(-1) as Cu2+ from CUSO4, 5 H2O. Cyanobacteria were kept under control during the summer. Microcystis sp. completely disappeared, which allowed swimming in the lake throughout the tourist season. Microcystis only reappeared 2 months after the treatment. Copper content in the water column only returned to its background level 2 months after copper addition. This high residence time of copper in the water might have been caused by complexation and adsorption of copper on natural organic matter, whose level was high in the ecosystem studied. A mechanism of transfer of 'truly' dissolved copper towards particulate copper has been underlined and explains the disappearance of this fraction of copper in the water column.
[35]
NALEWAJKO C, PREPAS E E. Resuspension could increase phytoplankton photosynthesis-responses of phytoplankton photosynthesis and phosphorus kinetics to resuspended sediments in copper sulfate-treated ponds[J]. Journal of environmental quality, 1996, 25:80-86.
[36]
王春德, 齐翠红, 李朝霞. 过氧化钙的净水增氧效果评估[J]. 生命科学研究, 2012, 16(4):345-349.
[37]
单德鑫, 李淑芹, 许景钢. 好氧堆肥对难溶性磷转化的影响[J]. 环境科学学报, 2009, 29(1):146-150.
[38]
葛长字, 王旭阳, 李佳顺, 等. 沉积物中生物活性磷赋存形态对耗氧有机物的响应[J]. 中国农学通报, 2019, 35(36):85-89.
[目的] 本研究为验证耗氧有机物影响沉积物中生物活性磷的赋存形态的假说。[方法]以葡萄糖代替耗氧有机物,将沉积物暴露于耗氧有机物30天。[结果表明] 不充气时,葡萄糖浓度0、2、4、8 mg/L下的表层沉积物Ex-P含量为0.02&plusmn;0.01、0.02&plusmn;0.01、0.03&plusmn;0.01、0.02&plusmn;0.01 μmol/g;充气时,相应葡萄糖浓度下的表层沉积物Ex-P含量为0.03&plusmn;0.00、0.03&plusmn;0.01、0.03&plusmn;0.01和0.06&plusmn;0.02μmol/g,葡萄糖浓度8mg/L下的Ex-P含量高于葡萄糖浓度0mg/L下的(P&lt; 5%)。不充气时,葡萄糖浓度0、2、4和8mg/L 下的表层沉积物IP含量为0.96&plusmn;0.42、0.74&plusmn;0.29、0.97&plusmn;0.78和0.88&plusmn;0.22μmol/g;充气时,相应葡萄糖浓度下的表层沉积物IP含量为0.37&plusmn;0.10、0.46&plusmn;0.16、0.41&plusmn;0.06和0.69&plusmn;0.05μmol/g,葡萄糖浓度8mg/L下的IP含量高于葡萄糖浓度0mg/L下的(P&lt; 5%)。[结论]耗氧有机物对沉积物中生物活性磷有双重阈值作用。
[39]
宋金明. 黄河口邻近海域沉积物中可转化的磷[J]. 海洋科学, 2000, 7:42-45,56.
[40]
石晓勇, 史致丽. 黄河口磷酸盐缓冲机制的探讨[J]. 海洋与湖沼, 1999, 30(2):192-198.
[41]
安敏, 文威, 孙淑娟, 等. pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响[J]. 环境科学学报, 2009, 29(12):2616-2622.
[42]
黄慧倩, 胡浩鹏, 杨斌, 等. 亚热带海湾表层沉积物对磷的吸附解析特征研究[J]. 环境科学研究, 2023, 36(2):363-372.
[43]
王贺, 路敏, 李苓, 等. 中国东海陆架海域柱状沉积物对磷的吸附行为[J]. 海洋湖沼通报, 2019(4):72-80.

基金

福建省省属公益类科研院所基本科研专项“多目标养殖区域养殖容量评估——以三沙湾为例”(2020R10130014)
国家重点研发计划“网箱养殖对底栖生态环境的影响与修复机制”(2018YFD0900704)
国家自然科学基金“菲律宾蛤仔的生境改良作用对大叶藻实生幼苗建成的促进应”(31972796)
PDF(1243 KB)

Accesses

Citation

Detail

段落导航
相关文章

/