
烟台市典型县域土壤pH时空变化特征及影响因素
Spatiotemporal Characteristics of Soil pH in Typical Counties of Yantai City and Influencing Factors
研究烟台市典型县域耕地土壤pH变化及其影响因素,为耕地质量提升提供科学依据。以栖霞市和蓬莱区为研究对象,2010年用网格法采集耕层土壤样品,分析土壤pH、交换性钙、交换性镁等基本性质,与第二次土壤普查(1984年)数据进行对比分析,采用地统计学法分析不同类型土壤pH的时空演变特征并比较不同级别土壤pH的变化情况。结果表明:1984—2010年25年来,烟台市土壤pH呈下降趋势,褐土和潮土pH下降幅度均约10%,棕壤约6%。随时间推移,烟台市土壤pH块金效应升高,空间自相关性减弱,受到随机因素影响的程度增大。烟台市北部及东部边缘等地土壤pH较高,酸化不明显;西南部地区土壤pH较低,酸化严重。与1984年相比,2010年pH≤6.00的耕地占比由5.8%增加至48.8%;pH>6.00的耕地占比则由94.2%下降至51.2%。栖霞市土壤交换性钙、镁含量随pH升高先上升后下降;蓬莱区土壤交换性钙、镁含量与pH呈显著正相关。烟台市耕地土壤呈现酸化的趋势,气候和施肥等是影响该区域耕地土壤酸化的主要因素。
This paper explored the characteristics of soil pH change and its influencing factors in arable land of typical counties in Yantai City and provided a scientific basis for arable land quality improvement. The soil samples of cultivated layer were collected in 2010 by grid sampling method from Qixia City and Penglai District as the research objects. Soil properties, including soil pH, exchangeable calcium and exchangeable magnesium were analyzed and compared with data of the second land survey in 1984. The pH spatiotemporal characteristics of different soil types were analyzed by geostatistics, changes in pH at different soil levels were compared. The results indicated that the soil pH in Yantai City showed a downward trend during 25 years (1984 to 2010). The declining degrees of pH were about 10% for cinnamon and fluvo-aquic soils and 6% for brown soil, respectively. The nugget effect of soil pH increased over time and the spatial autocorrelation of soil pH gradually decreased, and soil pH was greatly affected by random factors. Soil pH values in the northern and eastern edge of Yantai were high, and the acidification was not obvious. In contrast, soil pH values were low in southwest of Yantai where had severe acidification. The proportion of arable land with pH≤6.00 increased significantly from 5.8% in 1984 to 48.8% in 2010, while the proportion of arable land with pH>6.00 decreased significantly from 94.2% in 1984 to 51.2% in 2010. Both exchangeable calcium and exchangeable magnesium in Qixia City increased first and then decreased with the increase of pH, while both exchangeable calcium and exchangeable magnesium in Penglai City were positively correlated with pH. The cultivated land soil presented acidizing trend in Yantai. Climate and fertilization are the main factors affecting arable soil acidification in this region.
烟台市 / 土壤酸化 / 土壤类型 / 地统计学 / 时空变化特征 {{custom_keyword}} /
Yantai City / soil acidification / soil type / geostatistics / spatiotemporal characteristics {{custom_keyword}} /
表1 1984年和2010年栖霞市和蓬莱区耕层土壤pH变化特征 |
地区 | 年份 | 样本数 | 极差 | 最小值 | 最大值 | 均值 | 标准差 | 变异系数/% | 正态性 |
---|---|---|---|---|---|---|---|---|---|
栖霞市 | 1984 | 33 | 1.90 | 5.90 | 7.80 | 6.62a | 0.51 | 7.66 | 正态 |
2010 | 1469 | 4.00 | 4.20 | 8.20 | 5.82b | 0.78 | 13.40 | 正态 | |
蓬莱区 | 1984 | 19 | 2.80 | 5.20 | 8.00 | 6.85a | 0.80 | 11.57 | 正态 |
2010 | 2029 | 4.10 | 4.10 | 8.20 | 6.11b | 0.70 | 12.15 | 对数正态 | |
合计 | 1984 | 52 | 2.80 | 5.20 | 8.00 | 6.72a | 0.63 | 9.32 | 偏态 |
2010 | 3498 | 4.10 | 4.10 | 8.20 | 5.99b | 0.77 | 12.89 | 偏态 |
注:不同小写字母表示同一地区土壤pH在不同年份间差异显著(P≤0.05)。下同。 |
表2 1984、2010年烟台典型县域不同土壤类型pH变化特征 |
土壤类型 | 年份 | 样本数 | 极差 | 最小值 | 最大值 | 均值 | 标准差 | 变异系数/% | 正态性 |
---|---|---|---|---|---|---|---|---|---|
潮土 | 1984 | 11 | 1.50 | 6.00 | 7.50 | 6.65a | 0.43 | 6.47 | 正态 |
2010 | 710 | 3.80 | 4.10 | 7.90 | 5.99b | 0.75 | 12.45 | 偏态 | |
棕壤 | 1984 | 26 | 1.00 | 5.90 | 6.90 | 6.37a | 0.29 | 4.62 | 正态 |
2010 | 2075 | 4.10 | 4.10 | 8.20 | 5.99b | 0.75 | 12.53 | 偏态 | |
褐土 | 1984 | 14 | 1.20 | 6.80 | 8.00 | 7.51a | 0.35 | 4.69 | 正态 |
2010 | 118 | 3.30 | 4.90 | 8.20 | 6.74b | 0.69 | 10.24 | 偏态 |
表3 1984年和2010年烟台市典型县域土壤pH半方差函数模型 |
年份 | 模型 | 块金值(C0) | 基台值(C0+C) | 块基比/% | 变程/m | RSS | R2 |
---|---|---|---|---|---|---|---|
1984 | 高斯函数 | 0.00001 | 0.02142 | 0.05 | 2130 | 0.000094 | 0.535 |
2010 | 指数函数 | 0.00148 | 0.01636 | 9.05 | 9930 | 0.000001 | 0.805 |
注:RSS为Residual Sum of Squares的缩写,代表残差平方和,R2为模型的决定系数。 |
表4 不同pH分级下烟台市典型县域土壤交换性钙镁含量的分布特征 |
区域 | 交换性钙镁 | pH范围 | 样本数 | 极差/(cmol/kg) | 最小值/(cmol/kg) | 最大值/(cmol/kg) | 均值/(cmol/kg) | 标准差 | 变异系数/% |
---|---|---|---|---|---|---|---|---|---|
栖霞 | 交换性钙 | <6.50 | 501 | 58.25 | 0.25 | 58.50 | 18.08b | 6.72 | 37.16 |
6.50~7.50 | 118 | 102.75 | 4.75 | 107.50 | 24.37a | 15.03 | 61.66 | ||
>7.50 | 15 | 40.75 | 5.75 | 46.50 | 17.55b | 9.42 | 53.68 | ||
交换性镁 | <6.50 | 501 | 32.50 | 1.25 | 33.75 | 8.66b | 3.60 | 41.60 | |
6.50~7.50 | 118 | 15.41 | 1.67 | 17.08 | 9.36a | 3.49 | 37.26 | ||
>7.50 | 15 | 7.92 | 4.58 | 12.50 | 7.75b | 2.78 | 35.87 | ||
蓬莱 | 交换性钙 | <6.50 | 482 | 16.41 | 1.27 | 17.68 | 6.18c | 2.26 | 36.60 |
6.50~7.50 | 211 | 19.52 | 3.28 | 22.80 | 7.65b | 3.28 | 42.88 | ||
>7.50 | 18 | 22.92 | 4.39 | 27.31 | 12.56a | 6.52 | 51.89 | ||
交换性镁 | <6.50 | 482 | 5.84 | 0.53 | 6.37 | 2.71b | 1.33 | 49.26 | |
6.50~7.50 | 211 | 5.45 | 0.83 | 6.28 | 3.02a | 1.38 | 45.65 | ||
>7.50 | 18 | 4.10 | 1.80 | 5.90 | 3.01a | 1.17 | 38.99 |
[1] |
邹晓锦, 仇荣亮, 黄穗虹, 等. 广东大宝山复合污染土壤的改良及植物复垦[J]. 中国环境科学, 2010, 28(9):775-780.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
王洪, 曹婧, 毋俊华, 等. 近40年来陕西省耕层土壤pH的时空变化特征[J]. 中国生态农业学报(中英文), 2021, 29(6):1117-1126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
路艳艳, 丁方军, 刘春生, 等. 山东省胶东地区土壤酸化现状研究[J]. 化肥工业, 2017, 44(1):67-71,78-79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
张芳, 熊黑钢, 安放舟, 等. 基于盐(碱)生植被盖度的土壤碱化分级[J]. 土壤学报, 2012, 49(4):665-672.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
\n China is experiencing increasing problems with acid rain, groundwater pollution, and nitrous oxide emissions. Rapid development of industry and transportation has accelerated nitrate (N) emissions to the atmosphere. Consequently, soil degradation, water shortage, and pollution, in addition to atmospheric quality decline are becoming major public concerns across China. Since the 1990s, China has become both the largest consumer of chemical N fertilizers and the highest cereal producer in the world, which has consequences for arable soil acidification.\n \n Guo\n et al.\n \n (p.\n 1008\n, published online 11 February) present a meta-analysis of a regional acidification phenomenon in Chinese arable soils that is largely associated with higher N fertilization and higher crop production. Such large-scale soil acidification is likely to threaten the sustainability of agriculture and affect the biogeochemical cycles of nutrients and also toxic elements in soils.\n
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2):238-244.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Soil pH regulates soil biogeochemical processes and has cascading effects on terrestrial ecosystem structure and functions. Afforestation has been widely adopted to increase terrestrial carbon sequestration and enhance water and soil preservation. However, the effect of afforestation on soil pH is still poorly understood and inconclusive. Here we investigate the afforestation-caused soil pH changes with pairwise samplings from 549 afforested and 148 control plots in northern China. We find significant soil pH neutralization by afforestation-afforestation lowers pH in relatively alkaline soil but raises pH in relatively acid soil. The soil pH thresholds (T-pH), the point when afforestation changes from increasing to decreasing soil pH, are species-specific, ranging from 5.5 (Pinus koraiensis) to 7.3 (Populus spp.) with a mean of 6.3. These findings indicate that afforestation can modify soil pH if tree species and initial pH are properly matched, which may potentially improve soil fertility and promote ecosystem productivity.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
周杨, 姚岳良, 施丽珍, 等. 缙云县耕地土壤酸化及其预防与治理思考[J]. 浙江农业科学, 2021, 62(4):833-836.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王文娟, 杨知建, 徐华勤. 我国土壤酸化研究概述[J]. 安徽农业科学, 2015, 43(8):54-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
胡敏, 向永生, 张智, 等. 恩施州耕地土壤pH近30年变化特征[J]. 应用生态学报, 2017, 28(4):1289-1297.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
李涛, 于蕾, 万广华, 等. 近30年山东省耕地土壤pH时空变化特征及影响因素[J]. 土壤学报, 2021, 58(1):180-190.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
杜腾飞, 齐伟, 朱西存, 等. 基于生态安全格局的山地丘陵区自然资源空间精准识别与管制方法[J]. 自然资源学报, 2020, 35(5):1190-1200.
自然资源空间管制是平衡生态保护和经济发展关系的基本工具,严守生态安全格局的底线思维对于重建系统完备、生态盈余的自然资源空间管制新格局具有重要指导意义。以胶东半岛典型山地丘陵区——栖霞市为例,应用数据密集型知识挖掘,集成地理信息方法与模型,基于栅格从生态服务功能重要性和生态环境敏感性两方面精准识别生态源地,利用地形位指数修正基本阻力面,并运用最小累积阻力模型提取生态廊道,从而构建生态安全格局,实现自然资源分区管制。结果表明:栖霞市生态源地面积为627.80 km<sup>2</sup>,占全市总面积的31.14%,集中分布在中东、中南和西北部,且超过一半源地为林地;关键、优化生态廊道各237.19 km、83.90 km,大多由林地组成,主要分布在中东、西北和西南部,形成完整的生态网络;划定禁止建设区、限制建设区、条件建设区和优先建设区,为自然资源空间精准管制提供方法保障。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
万炜, 师纪博, 刘忠, 等. 栖霞市苹果园氮磷养分平衡及环境风险评价[J]. 农业工程学报, 2020, 36(4):211-219.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
连相汝, 庞延军, 李翔飞, 等. 烟台市林木种苗产业发展形势分析及对策研究[J]. 园艺与种苗, 2022, 42(6):54-55,75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
魏国栋, 李波, 高山, 等. 烟台市野生菊科药用植物资源和区系研究[J]. 中国野生植物资源, 2022, 41(7):91-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
詹鸿. 福州市耕地土壤pH值空间分布及变化特征[J]. 福建农业科技, 2022, 53(2):71-75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
王志刚, 赵永存, 廖启林, 等. 近20年来江苏省土壤pH值时空变化及其驱动力[J]. 生态学报, 2010, 28(2):720-727.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
周峻宇, 李明德, 周旋, 等. 南方典型母质发育水稻土剖面酸化特征研究[J]. 中国土壤与肥料, 2022(3):7-13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
杨歆歆, 赵庚星, 李涛, 等. 山东省土壤酸化特征及其影响因素分析[J]. 农业工程报, 2016, 32(S2):155-160.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
孟凡乔, 王坤, 肖广敏, 等. 华北平原潮土区粮田氮淋失阻控措施及效果分析[J]. 中国生态农业学报(中英文), 2021, 29(1):141-153.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社,1998.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
谢建文. 洞口县稻田土壤酸化的现状及改良措施[J]. 中国农技推广, 2019, 35(3):50-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
李继红. 我国土壤酸化的成因与防控研究[J]. 农业灾害研究, 2012, 2(6):42-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
曾路生, 高岩, 李俊良, 等. 寿光大棚菜地酸化与土壤养分变化关系研究[J]. 水土保持学报, 2010(4):157-161.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
陈绍荣, 余根德, 白云飞, 等. 土壤酸化及酸性土壤调理剂应用概述[J]. 化肥工业, 2013(2):66-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
罗博仁, 李聪聪, 朱悦蕊, 等. 3种绿肥对茶园土壤pH值和交换性阳离子含量的影响[J]. 亚热带农业研究, 2019, 15(2):121-126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
李爽, 张玉龙, 范庆锋, 等. 不同灌溉方式对保护地土壤酸化特征的影响[J]. 土壤学报, 2012(5):909-915.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |