不同方法提取的生物质炭可溶性有机物性质研究

郑小东, 李翔, 魏岚, 黄连喜, 陈伟盛, 黄玉芬, 黄庆, 刘忠珍

中国农学通报. 2023, 39(12): 61-68

PDF(1446 KB)
PDF(1446 KB)
中国农学通报 ›› 2023, Vol. 39 ›› Issue (12) : 61-68. DOI: 10.11924/j.issn.1000-6850.casb2022-0434
资源·环境·生态·土壤

不同方法提取的生物质炭可溶性有机物性质研究

作者信息 +

Biochar-derived Dissolved Organic Matter Extracted by Different Methods: Property Study

Author information +
History +

摘要

为了揭示不同提取方法对生物质炭来源可溶性有机物(DOM)性质的影响,以生物质炭为研究对象,采用多种提取剂、提取方式提取生物质炭DOM,分析其碳含量及化学组成特征。结果表明:低温生物质炭中碱提取物DOC含量较高(15.6~40.0 g/kg),而高温生物质炭中盐提取物较高(0.27~7.04 g/kg)。酸提取物DOM化学组成较为简单,表现为SUVA254SUVA280值较低,且玉米秆生物质炭中酸提取物亲水性DOM比例(44.6%~73.6%)显著高于水和碱提取物(11.0%~53.2%、0.30%~31.4%)。碱提取物DOM化学组成较复杂,其SUVA254SUVA280值较高,同时玉米秆生物质炭中碱提取物疏水性DOM比例(68.6%~99.7%)显著高于酸和盐提取物(26.4%~55.4%、0%~46.9%)。该研究揭示了提取剂在生物质炭DOM提取方法中的重要性,而提取方式对其性质影响不显著,可为生物质炭DOM提取方法的选择提供参考。

Abstract

This study aims at investigating the impact of different extraction methods on the properties of dissolved organic matter (DOM) derived from biochar. Biochar was used as material, DOM was extracted with various extracting agents and extraction patterns, and the carbon content and chemical composition of the extracts were analyzed. The results showed that the DOC content of alkali extract in low-temperature biochar was relatively high (15.6-40.0 g/kg), so was the DOC content of salt extract in high-temperature biochar (0.27-7.04 g/kg). The chemical composition of DOM in the acid extract remained relatively simple, showing that SUVA254 and SUVA280 were low. A higher proportion of hydrophilic DOM was found in the acid extract from cornstalk-derived biochar (44.6%-73.6%) compared with that in the water and alkali extracts (11.0%-53.2% and 0.30%-31.4%), respectively (P<0.05). Correspondingly, the chemical composition of DOM in the alkali extract was relatively complex, showing that SUVA254 and SUVA280 were high. A higher proportion of hydrophobic DOM was found in the alkali extract from cornstalk-derived biochar (68.6%-99.7%) compared with that in the acid and salt extracts (26.4%-55.4% and 0%-46.9%), respectively (P<0.05). The study indicates that extracting agents have certain significance in biochar DOM extraction, while extraction patterns exhibit a minor effect on the properties of biochar DOM. It could provide reference for selecting biochar DOM extraction method.

关键词

生物质炭 / 可溶性有机物 / 提取方法 / 化学组成 / 土壤重金属污染修复

Key words

biochar / dissolved organic matter / extraction method / chemical composition / soil heavy metal contamination remediation

引用本文

导出引用
郑小东 , 李翔 , 魏岚 , 黄连喜 , 陈伟盛 , 黄玉芬 , 黄庆 , 刘忠珍. 不同方法提取的生物质炭可溶性有机物性质研究. 中国农学通报. 2023, 39(12): 61-68 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0434
ZHENG Xiaodong , LI Xiang , WEI Lan , HUANG Lianxi , CHEN Weisheng , HUANG Yufen , HUANG Qing , LIU Zhongzhen. Biochar-derived Dissolved Organic Matter Extracted by Different Methods: Property Study. Chinese Agricultural Science Bulletin. 2023, 39(12): 61-68 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0434

0 引言

自巴西亚马逊流域发现含生物质炭的土壤以来,生物质炭逐渐成为土壤及环境领域备受关注的研究热点[1]。以往观点认为,生物质炭以惰性碳成分为主,具有疏松多孔、比表面积巨大、吸附能力强等特征,是土壤重金属污染修复的明星材料[2]。近期研究表明,生物质炭携带的可溶性有机物(dissolved organic matter,DOM)组分在土壤重金属污染修复中也发挥着重要作用[3]。有研究发现,DOM是天然的重金属提取剂,可与重金属离子(如Cd2+、Cu2+、Pb2+、Zn2+等)形成可溶性金属复合物,尽管提取效率弱于乙二胺四乙酸(EDTA)、氮三乙酸(NTA)等提取剂,但在土壤重金属污染修复中仍具有一定的应用潜力[4]。DOM组成中的类蛋白组分主要与Mn、Cr结合,类腐殖酸类物质与Ni、Pb结合,说明不同DOM组分可与特定重金属结合,进而改变其可移动性[5-6]。也有研究表明,DOM组分中的酚类、羟基及氨基化合物优先结合Cd,而羧基化合物对Cu结合较快[7]。可见,生物质炭DOM在土壤重金属污染治理中具有差异性的修复效果。
不同提取方法所获得的生物质炭DOM性质有所差异。目前,生物质炭DOM的提取方法(如提取剂、提取方式等)多样化,其中提取剂包括水、酸、碱等[8],提取方式包括震荡法、超声法等[9-10]。有研究表明,以水为提取剂、采用0.45 μm滤膜过滤时,土壤可溶性有机碳(DOC)含量以水田高于旱地土壤[11];而以K2SO4为提取剂、采用滤纸过滤时,旱地土壤DOC含量则高于水田土壤[12]。ZHENG等[13]研究表明,与水相比,K2SO4提取的土壤DOM化学组成更为复杂。生物质炭DOM中的化合物在不同提取剂中溶解性差异较大,例如腐殖酸类物质不溶于水及酸性溶液,但能溶于碱性溶液,而一些小分子化合物则在酸、碱及盐类溶液中均能溶解。同时,酸、碱及盐类溶液中的离子,也可以置换出吸附在生物质炭中的化合物从而吸附于生物质炭位点[14]。到目前为止,不同提取方法下生物质炭DOM性质(含量及组成)有何差异尚不清楚。DOM“质”(化学组成)在土壤一系列生态过程及功能发挥中的重要性高于“量”,阐明不同提取剂及提取方式下生物质炭DOM性质差异,尤其是其化学组成特征,对于评价生物质炭DOM在土壤重金属污染修复中的应用潜力具有重要意义。
DOM作为生物质炭的重要组成部分,其性质与生物质炭原料、制备温度也紧密相关,植物源与动物源以及低、高温制备的生物质炭性质明显不同[15]。本研究以低、高温制备的玉米秆、猪粪生物质炭为研究对象,探明不同提取剂及提取方式下生物质炭DOC含量及DOM化学组成特征,以期为阐明生物质炭DOM在土壤重金属污染治理中的应用潜力提供参考依据。

1 材料与方法

1.1 生物质炭DOM提取

以低、高温(300℃、700℃)制备的玉米秆、猪粪生物质炭为研究对象(生物质炭基本性质见表1),采用4种提取剂(H2O、0.1 mol/L HCl、0.1 mol/L NaOH、0.1 mol/L K2SO4)及2种提取方式(震荡法、超声法)提取生物质炭DOM。具体步骤为:称取1 g 60目生物质炭,对应添加30 mL提取剂,以震荡法在25℃黑暗条件下震荡(150 r/min) 2 h,另以超声法在50 W条件下超声水浴1 h,静置30 min后过0.45 μm滤膜[16],滤液即为生物质炭DOM溶液。所得溶液分为两部分,一部分用于测定DOC含量、单位吸光度及荧光光谱等指标,另一部分经冷冻干燥获得固体样品后测定DOM化学组成。
表1 生物质炭基本性质
生物质炭类型 表面积/(m2/g) 孔直径/nm N/% C/% H/% H/C O/C
玉米秆-低温 3.33 1.36 2.75 53.7 3.70 0.07 0.74
玉米秆-高温 3.05 4.72 1.59 65.2 2.02 0.03 0.48
猪粪-低温 16.2 1.18 2.23 19.4 1.75 0.09 3.92
猪粪-高温 52.5 1.19 0.33 9.59 0.92 0.10 9.20

1.2 测定项目及方法

DOC含量采用总碳分析仪(multi N/C2100,德国耶拿)测定;DOM溶液吸光度测定:将DOM溶液统一稀释10倍,使用紫外可见分光光度计(UV-2450,日本岛津)于波长254 nm和280 nm处测定。上述波长的吸光度值与DOC含量的比值,即为单位吸光度值,简称为SUVA254SUVA280[17]。采用全自动比表面积分析仪(quantachrome instrument)测定生物质炭比表面积,采用孔径分析仪(quantachrome instrument)测定其孔体积及直径[18],采用有机元素分析仪(Thermo Flash 2000)测定其元素含量。采用三维荧光光谱仪(F-7000,日本日立)进行荧光光谱分析:激发波长范围为220~400 nm,发射波长范围为280~600 nm,增量为3 nm,0.5 s响应时间,扫描速度为2400 nm/min,系统自动校正瑞利和拉曼散射。腐殖化指数(HIX)为435~480 nm区域积分值除以300~345 nm区域积分值、435~480 nm区域积分值之和[19],该值与DOM腐殖化程度成正比。将双击式裂解器(PY-2020iD,日本Frontier Laboratories Ltd.)与气相色谱-质谱仪(QP2010,日本岛津)联用对DOM溶液冷冻干燥固体进行化学组成测定[20]。通过比对裂解产物质谱和NIST数据库质谱图识别目标产物,裂解产物可归类为原DOM化合物组分[21],如脂类、木质素类、芳香化合物、多环芳香烃、酚类、蛋白质类、酸、糖类。其中蛋白质、糖类、酸归类为亲水性DOM组分(hydrophilic dissolved organic matter,Hi-DOM)[22],脂类、木质素类、芳香化合物、多环芳香烃、酚类归类为疏水性DOM组分(hydrophobic dissolved organic matter,Ho-DOM)[23]

1.3 数据处理

统计分析以SPSS 11.0软件进行,采用最小显著差法分析DOC含量、单位吸光度及化学组成等指标显著性差异,采用配对t检验分析HIX指标显著性差异;运行R分析软件并使用randomforest、rfpermute等安装包对DOC含量、单位吸光度、荧光指数及化学组成等指标进行Random Forest分析;采用origin 8.5软件作图。

2 结果与分析

2.1 生物质炭DOC含量

图1为不同提取剂及提取方式下生物质炭DOC含量特征。各提取方式下,低温玉米秆及猪粪生物质炭DOC含量以碱提取物显著高于水、酸及盐提取物(P<0.05),分别为35.4、8.8、5.4、8.7 g/kg和17.6、5.6、9.1、7.7 g/kg(超声法)、40.0、6.6、4.2、6.1 g/kg和15.6、3.8、8.4、5.1 g/kg(震荡法);高温玉米秆及猪粪生物质炭中,DOC含量则以盐提取物显著高于水、酸及碱提取物(P<0.05),分别为7.0、2.2、0.7、2.7 g/kg和1.3、0.3、0.6、0.9 g/kg(超声法)、4.5、1.7、0.2、1.0 g/kg和0.7、0.2、0.3、0.3 g/kg(震荡法)。
图1 不同提取剂及提取方式下生物质炭DOC含量特征
图中不同字母表示处理间在P<0.05水平差异显著

Full size|PPT slide

2.2 生物质炭DOM单位吸光度及化学组成

酸提取的生物质炭DOM SUVA254SUVA280均处于较低水平(图2),其中低温玉米秆生物质炭中酸提取物SUVA254SUVA280分别为0.015~0.016、0.006~0.007,显著低于水、碱及盐提取物(0.040~0.049、0.024~0.047);其他3种生物质炭(高温玉米秆、低温及高温猪粪生物质炭)酸提取物SUVA254SUVA280较低,分别为0.001~0.059、0.001~0.016。对于低温及高温玉米秆、低温猪粪生物质炭来讲,其DOM SUVA254SUVA280以碱提取物较高,分别为0.042~0.143、0.021~0.057;而在高温猪粪生物质炭中,碱、水、酸和盐提取物SUVA254为0.0002~0.003,SUVA280为0.0002~0.002。
图2 不同提取剂及提取方式下生物质炭DOM吸光度指标特征
图中不同字母表示处理间在P<0.05水平差异显著

Full size|PPT slide

玉米秆生物质炭中,酸提取物的亲水性DOM比例为44.6%~73.6%,显著高于水、碱提取物(11.0%~53.2%、0.3%~31.4%);相对来讲,酸提取物中的疏水性DOM比例则显著低于水、碱提取物,分别为26.4%~55.4%、46.7%~89.0%、68.6%~99.7%(P<0.05)。在猪粪生物质炭中,酸提取物的亲水性DOM比例低于水、盐提取物(P>0.05);疏水性DOM则表现为相反的趋势,以酸提取物高于水、盐提取物(P>0.05)(表2)。
表2 不同提取剂及提取方法下生物质炭Hi-DOM和Ho-DOM组分比例
Hi-DOM组分/%
生物质炭原料 编号
玉米秆 1 53.2 73.6 31.4 46.6
2 25.4 44.6 0.3 82.4
3 35.1 60.5 17.3 57.5
4 11 63.2 20.2 100
猪粪 1 57.1 53.4 80.8 67.2
2 90.6 62 93.8 100
3 81.1 78.7 75.4 87.4
4 100 81 100 89
玉米秆 1 46.7 26.4 68.6 46.9
2 74.6 55.4 99.7 17.6
3 64.9 38.7 82.7 42.5
4 89 36.8 79.8 0
猪粪 1 42.9 46.6 19.2 32.8
2 9.4 38 6.2 0
3 18.9 21.3 24.6 12.6
4 0 19 0 11
注:编号1~4分别代表提取方法+裂解温度分别为超声+低温、超声+高温、震荡+低温、震荡+高温生物质炭提取的DOM。每种原料制备的生物质炭对应组分(Hi或者Ho-DOM组分)中,不同提取剂处理分别采用配对t检验进行显著性检验,其差异显著性已在文中提及但表中未标出。

2.3 生物质炭DOM HIX指数

利用Randomforest软件包分析生物质炭DOM HIX指数在各因素下的差异,结果表明,该指数在不同温度制备的生物质炭DOM中差异显著(图3图4f)。图3结果表明,低温生物质炭DOM HIX指数显著高于高温生物质炭(P<0.05),分别为0.960、0.709。
图3 不同提取剂及提取方式下生物质炭DOM HIX指数特征
图中不同字母表示处理间在P<0.05水平差异显著

Full size|PPT slide

图4 基于随机森林方法的生物质炭DOM各指标影响因素分析
图中表示处理间在P<0.05水平差异显著,表示处理间在P<0.01水平差异显著

Full size|PPT slide

3 讨论与结论

不同原料及温度制备的生物质炭DOM性质研究较多,针对提取方法与生物质炭DOM性质的关系研究尚无报道。本研究结果表明,不同提取剂提取的生物质炭DOC含量存在明显差异,且这种差异与生物质炭本身(原料及制备温度)密切相关(图4a)。与已有研究结果一致[24],低温生物质炭中,碱提取的DOC含量显著高于其他提取剂。碱性提取剂可促进生物质炭DOM组分官能团解离、酯键断裂,从而增加大分子化合物的溶解性;而酸性提取剂提取的生物质炭DOM组分中多数官能团处于非解离状态,导致提取的DOC含量显著低于碱性提取剂[25]。高温生物质炭以盐提取的DOC含量较高(图1),这可能与不同温度制备的生物质炭DOM化学组成、官能团及溶解性存在差异有关。
特定波长下的单位吸光度可以表征溶液中有机物的结构特性,如SUVA254表示溶液中芳香化合物所占比例,该值越大,说明化合物结构越复杂;SUVA280则与可矿化分解部分所占比例显著负相关,可用来评价DOM稳定性[26]。本研究发现生物质炭DOM单位吸光度(SUVA254SUVA280)以酸提取物较低、碱提取物较高,且玉米秆生物质炭酸提取物中的亲水性DOM比例显著高于碱提取物,进一步说明酸提取的生物质炭DOM化学组成相对简单,而碱提取物化学组成较为复杂。生物质炭DOM包括酸沉降组分(如高分子量、高芳香性化合物)、酸溶性组分(如低分子量、低芳香性化合物),其中碱提取的DOM组分比酸、水提取物含有更多的酸沉降组分[27]。盐类溶液常用于土壤DOM提取,尽管为中性,但其可通过离子交换作用将吸附在生物质炭颗粒表面的DOM组分解离出来[28],导致盐类提取液比水含有更多的疏水性组分。本研究结果显示,在玉米秆生物质炭中,盐提取的疏水性DOM显著少于碱,可见盐的提取能力总体上弱于碱。
HIX指数表征有机组分腐殖化程度,其值与有机组分化学稳定性成正比[29]。生物质炭DOM包括生物高分子、腐殖质类、富里酸类、低分子量中性物质及酸类等,且各热解阶段均伴随有新DOM产生及早期DOM的次级反应(如分解、压缩、环化和聚合等),这些化学组分共同决定着DOM腐殖化程度[30]。早期观点认为,高温生物质炭DOM化学组成复杂,稳定性较高[31]。然而,WU等[32]研究指出,不同温度条件热解的生物质炭DOM HIX指数表现为700℃<300℃<500℃<400℃<600℃,与本研究结果一致(图3)。可见,高温热解产生的生物质炭DOM腐殖化程度未必高。较高的热解温度下,复杂的DOM组分可能逐步热解为结构简单、低分子量组分,导致HIX指数下降。
本研究结果显示,不同类型生物质炭中,提取剂提取的DOM化学组成趋势并不一致,主要取决于生物质炭制备条件(原料及热解温度)差异。例如,低温猪粪生物质炭DOM SUVA254SUVA280以碱提取物最高且显著高于其他提取剂的提取物;同时,与低温猪粪生物质炭相比,各提取剂获得的高温猪粪生物质炭DOM SUVA254SUVA280明显降低(图2),可见不同提取剂提取的生物质炭DOM组成与生物质炭的制备温度也有较大关系(图4b和4c)。研究表明,随着热解温度的增加,生物质炭含氧官能团减少而芳香结构、碱性成分增加,直接影响生物质炭DOM组成[33]。低温生物质炭DOM含有较多的羧基化合物,而高温生物质炭DOM芳香性化合物、疏水性化合物较多,这些化合物溶解性明显不同[34]。另一方面,本研究中提取的DOM组成随生物质炭原料有所不同,这与生物质炭本身携带的碳组分密切相关。植物(如玉米)中含有较多的纤维素、半纤维素等成分[35],而本研究在猪粪生物质炭DOM中则发现较多的含氮化合物,这可能与猪所食饲料含有较多的蛋白质有关[36]。生物质炭原料广泛、热解温度多样化,提取方法、生物质炭类型等因素与生物质炭DOM化学组成的响应关系有待进一步研究。
本研究结果表明,不同提取剂提取的生物质炭DOM性质(含量及组成)差异显著,而两种提取方式(超声法与震荡法)下生物质炭DOM性质差异不显著,说明提取剂的选择在生物质炭DOM提取方法中至关重要,而超声法、震荡法这两种方式均可使用。从生物质炭DOC含量角度来讲,低温生物质炭中碱提取能力较高,而在高温生物质炭中盐提取能力较高。因此,考虑到提取效率,低温生物质炭DOC更适宜用碱提取,而高温生物质炭适宜用盐提取。而从化学组成方面来讲,酸提取的生物质炭DOM组成结构相对简单,在土壤中移动性较强[37];而碱提取物化学组成较复杂,在土壤中会参与物理、化学等吸附过程[38],移动性相对较弱。生物质炭DOM可直接或间接控制重金属的移动及生物累积,例如亲水性DOM组分分子量小、移动性强,可通过配位键与重金属形成金属复合体,从而增加重金属移动性及生物可利用性。疏水性DOM分子量大、移动性弱,更有利于重金属固定,生物可利用性降低[39]。本研究阐明了提取方法对生物质炭DOM性质的影响,而不同提取剂获得的生物质炭DOM与重金属形成的复合物特性及其环境效应需要进一步研究。
生物质炭中的易变组分(尤其是DOM)正引起土壤及环境领域学者的广泛关注,有关生物质炭DOM提取方法的适用范围及其限制因素将是学者们的关注点。本研究揭示了生物质炭DOM提取方法中的两个关键要素(提取剂、提取方式)与其性质的关系,发现了提取剂是决定生物质炭DOM含量及化学组成的关键因子,而提取方式对其性质影响不明显。研究结果可为生物质炭DOM提取方法的选择提供参考。

参考文献

[1]
陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16):3324-3333.
生物炭以其良好的解剖结构和理化性质,广泛的材料来源和广阔的产业化发展前景,成为当今农业、能源与环境等领域的研究热点。本文综合分析、评述了生物炭在土壤、作物、农田生态系统等领域应用的主要研究进展及其未来保障中国粮食安全的重要意义,从低碳、循环、可持续视角,客观、辩证地探讨了生物炭在农业上的应用价值及其产业化发展前景。生物炭在修复土壤障碍,提升耕地生产性能和作物生产能力,促进农业可持续发展和保障国家粮食安全等方面具有重要现实意义和应用价值,本文结合中国国情,提出了进一步深入研究与开发生物炭产业的方向与建议,旨在为中国生物炭产业的健康发展提供参考。
[2]
廖聪坚, 赵晓蕾, 刘凯, 等. 电活性微生物激活生物质炭/零价铁协同钝化Cr(Ⅵ)及机制[J]. 环境科学, 2021, 42(9):4520-4526.
[3]
卞荣军, 刘晓雨, 郑聚锋, 等. 生物质炭可溶性有机物化学组成及生物活性意义[J]. 中国农业科学, 2022, 55(11):2174-2186.
生物质热解炭化过程中,有机可挥发组分从固相逸出,冷凝后重新吸附于生物质炭,成为其中的可溶性有机物。生物质炭可溶性有机物化学组成复杂,主要含小分子有机物与芳香类化合物且含有丰富的官能团,具有较高的化学反应活性和生物活性,可显著地改变土壤中养分元素和污染物的形态与有效性,影响土壤微生物组成与丰度,调控作物的生长与健康。依生物质原料和热解条件的差异,生物质炭可溶性有机物的化学结构与生物活性功能也不尽相同。生物质炭可溶性有机物的生物活性意义主要表现为对生物的刺激作用,但部分生物质炭可溶性有机物可能具有一定的潜在毒性风险。通过提取生物质炭可溶性有机物可生产具有生物刺激作用的商品液体有机肥,从而实现生物质炭的分值利用。未来需要进一步加强生物质炭可溶性组分的生物活性或毒性物质的鉴定及其形成机制的研究,这对于生物质炭产品的优化是十分必要的,也是应用生物质炭尽量避免环境风险的要求。
[4]
BORGGAARD O K, HOLM P E, STROBEL B W, et al. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: a review[J]. Geoderma, 2019, 343:235-246.
[5]
ZHAO C, GAO S J, ZHOU L, et al. Dissolved organic matter in urban forestland soil and its interactions with typical heavy metals: a case of Daxing District, Beijing[J]. Environmental science and pollution research, 2019, 26:2960-2973.
[6]
YUAN D H, AN Y C, HE X S, et al. Fluorescent characteristic and compositional change of dissolved organic matter and its effect on heavy metal distribution in composting leachates[J]. Environmental science and pollution research, 2018, 25:18866-18878.
[7]
HUANG M H, LI Z W, HUANG B, et al. Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses[J]. Journal of hazardous materials, 2018, 344:539-548.
The binding of Cd and Cu to dissolved organic matter (DOM) derived from compost (CP) and rice straw (ST) was studied through an approach combining parallel factor (PARAFAC) analysis and two-dimensional correlation spectroscopy (2DCOS). Both humic-like and protein-like substances have been observed in CP and ST. Comparing with the Cu, Cd exhibited a lower affinity to DOM, and the quenching curve of Cd failed to be fitted by the Ryan and Weber Model, indicating that the environmental risk caused by applying CP or ST to Cd-polluted soil should be considered. The stability constants (log K) of Cu ranged from 3.87 to 5.03, and a larger value was found in CP than those in ST. Protein-like component also showed obvious fluorescence quenching with heavy metals addition. Besides, in CP, phenol-OH and carboxyl showed the fastest response to Cd and Cu, respectively; however, in ST, amide group and phenol-OH displayed the fastest response to Cd and Cu, respectively. These results provide a more detailed knowledge of the interaction mechanism of heavy metals with DOM at the molecular level, which is of great significance for reasonable application of compost and rice straw and efficient control of heavy metal in farmland soil.Copyright © 2017 Elsevier B.V. All rights reserved.
[8]
SMITH C R, HATCHER P G, KUMAR S, et al. Investigation into the sources of biochar water-soluble organic compounds and their potential toxicity on aquatic microorganisms[J]. ACS sustainable chemistry and engineering, 2016, 4:2550-2558.
[9]
FU H Y, LIU H T, MAO J D, et al. Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation[J]. Environmental science and technology, 2016, 50:1218-1226.
Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants.
[10]
WEI J, TU C, YUAN G D, et al. Limited Cu (II) binding to biochar DOM: Evidence from C K-edge NEXAFS and EEM-PARAFAC combined with two-dimensional correlation analysis[J]. Science of the total environment, 2020, 701:1-10.
[11]
韩成卫, 李忠佩, 刘丽, 等. 去除溶解性有机质对红壤水稻土碳氮矿化的影响[J]. 中国农业科学, 2007, 40(1):107-113.
[12]
李玲, 肖和艾, 苏以荣, 等. 土地利用对亚热带红壤区典型景观单元土壤溶解有机碳含量的影响[J]. 中国农业科学, 2008, 41(1): 122-128.
[13]
ZHENG X D, CHEN X B, LIANG C M, et al. Influence of extractants and filter materials in the extraction of dissolved organic matter (DOM) from subtropical agricultural soil[J]. Emirates journal of food and agriculture, 2018, 30(3):165-172.
[14]
ENDERS A, HANLEY K, WHITMAN T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource technology, 2012, 114:644-653.
Biochars (n=94) were found to have ash contents from 0.4% to 88.2%, volatile matter from 13.2% to 70.0%, and fixed carbon from 0% to 77.4% (w/w). Greater pyrolysis temperature for low-ash biochars increased fixed carbon, but decreased it for biochars with more than 20% ash. Nitrogen recovery varied depending on feedstock used to a greater extent (12-68%) than organic (25-45%) or total C (41-76%) at a pyrolysis temperature of 600 °C. Fixed carbon production ranged from no enrichment in poultry biochar to a 10-fold increase in corn biochar (at 600 °C). Prediction of biochar stability was improved by a combination of volatile matter and H:C ratios corrected for inorganic C. In contrast to stability, agronomic utility of biochars is not an absolute value, as it needs to meet local soil constraints. Woody feedstock demonstrated the greatest versatility with pH values ranging from 4 to 9.Copyright © 2012 Elsevier Ltd. All rights reserved.
[15]
袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5):1402-1417.
[16]
RAJAPAKSHA A U, OK Y S, NAGGAR A E, et al. Dissolved organic matter characterization of biochars produced from different feedstock materials[J]. Journal of environmental management, 2019, 233:393-399.
Fluorescence excitation-emission matrix (EEM) spectroscopy coupled with parallel factor analysis (PARAFAC) enables better understanding of the nature of dissolved organic matter (DOM). In the current study, we characterized 10 biochar samples produced from different feedstocks using EEM/PARAFAC analysis. The composition and distribution of DOM substances present in biochar varied significantly according to feedstock, activation, and pyrolysis temperature. The integration of proximate and ultimate analyses of the solid phase together with water extractable organic matter (WEOM) phase of biochar provided new insights into the characterization of biochars, including nature and functionality. Characterization of both WEOM and solid phases is recommended for biochar research before large-scale production for various environmental and industrial applications.Copyright © 2018 Elsevier Ltd. All rights reserved.
[17]
高洁, 江韬, 李璐璐, 等. 三峡库区消落带土壤中可溶性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学, 2015, 36(1):151-162.
[18]
郭晓慧, 康康, 于秀男, 等. 磁改性柚子皮与杏仁壳生物炭的理化性质研究[J]. 农业工程学报, 2018, 34(S1):164-171.
[19]
LAWAETZ A J, STEDMON C A. Fluorescence intensity calibration using the Raman scatter peak of water[J]. Applied spectroscopy, 2009, 63(8):936-940.
Fluorescence data of replicate samples obtained from different fluorescence spectrometers or by the same spectrometer but with different instrument settings can have great intensity differences. In order to compare such data an intensity calibration must be applied. Here we explain a simple calibration method for fluorescence intensity using only the integrated area of a water Raman peak. By applying this method to data from three different instruments, we show that it is possible to remove instrument-dependent intensity factors, and we present results on a unified scale of Raman units. The method presented is a rapid and simple approach suitable for routine measurements with no need for hazardous chemicals.
[20]
郑小东, 陈香碧, 胡亚军, 等. 亚热带典型地貌下旱地和水田可溶性有要物化学组成特征[J]. 土壤, 2019, 51(6):1114-1121.
[21]
PLANT E L, SMERNIK R J, LEEUWEN J V, et al. Changes in the nature of dissolved organics during pulp and paper mill wastewater treatment: a multivariate statistical study combining data from three analytical techniques[J]. Environmental science and pollution research, 2014, 21(6):4265-4275.
[22]
PULLICINO D S, GIGLIOTTI G. Oxidative biodegradation of dissolved organic matter during composting[J]. Chemosphere, 2007, 68:1030-1040.
[23]
KALMYKOVA Y, MOONA N, STROMVALL A M, et al. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters[J]. Water resources, 2014, 56:246-257.
[24]
QU X L, FU H Y, MAO J D, et al. Chemical and structural properties of dissolved black carbon released from biochars[J]. Carbon, 2016, 96:759-767.
[25]
CHEN Z, XIAO X, CHEN B, et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental science and technology, 2015, 49(1):309-317.
Surface functional groups such as carboxyl play a vital role in the environmental applications of biochar as a soil amendment. However, the quantification of oxygen-containing groups on a biochar surface still lacks systematical investigation. In this paper, we report an integrated method combining chemical and spectroscopic techniques that were established to quantitatively identify the chemical states, dissociation constants (pK(a)), and contents of oxygen-containing groups on dairy manure-derived biochars prepared at 100-700 °C. Unexpectedly, the dissociation pH of carboxyl groups on the biochar surface covered a wide range of pH values (pH 2-11), due to the varied structural microenvironments and chemical states. For low temperature biochars (≤ 350 °C), carboxyl existed not only as hydrogen-bonded carboxyl and unbonded carboxyl groups but also formed esters at the surface of biochars. The esters consumed OH(-) via saponification in the alkaline pH region and enhanced the dissolution of organic matter from biochars. For high temperature biochars (≥ 500 °C), esters came from carboxyl were almost eliminated via carbonization (ester pyrolysis), while lactones were developed. The surface density of carboxyl groups on biochars decreased sharply with the increase of the biochar-producing temperature, but the total contents of the surface carboxyls for different biochars were comparable (with a difference <3-fold) as a result of the expanded surface area at high pyrolytic temperatures. Understanding the wide pKa ranges and the abundant contents of carboxyl groups on biochars is a prerequisite to recognition of the multifunctional applications and biogeochemical cycling of biochars.
[26]
JAFFRAIN J, GERARD F, MEYER M, et al. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry[J]. Soil science society of America journal, 2007, 71(6):1851-1858.
[27]
LIU C H, CHU W Y, LI H, et al. Quantification and characterization of dissolved organic carbon from biochars[J]. Geoderma, 2019, 335:161-169.
[28]
JONES D L, WILLETT B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil biology and biochemistry, 2006, 38:991-999.
[29]
施暖暖, 李婉秋, Marios Drosos, 等. 不同原料生物质炭DOM组分成分特性[J]. 环境科学学报, 2022, 42(9):281-290.
[30]
LIU P, PTACEK C J, BLOWES D W, et al. Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures[J]. Journal of environmental quality, 2015, 44:684-695.
Biochar has been used as a soil amendment, as a water treatment material, and for carbon (C) sequestration. Thirty-six biochars, produced from wood, agricultural residue, and manure feedstocks at different temperatures, were evaluated for the aqueous leaching of different forms of soluble C. The release of inorganic C (alkalinity), organic acids (OAs), and total dissolved organic C (DOC) was highly variable and dependent on the feedstock and pyrolysis temperature. The pH and alkalinity increased for the majority of samples. Higher pH values were associated with high-temperature (high-T) (600 and 700°C) biochars. Statistically significant differences in alkalinity were not observed between low-temperature (low-T) (300°C) and high-T biochars, whereas alkalinity released from wood-based biochar was significantly lower than from others. Concentrations of OAs and DOC released from low-T biochars were greater than from high-T biochars. The C in the OAs represented 1 to 60% of the total DOC released, indicating the presence of other DOC forms. The C released as DOC represented up to 3% (majority <0.1%) of the total C in the biochar. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed the high-T biochars had a greater proportion of micropores. Fourier transform infrared spectroscopy showed that hydroxyl, aliphatic, and quinone were the predominant functional groups of all biochars and that the abundance of other functional groups was dependent on the feedstock. The release of DOC, especially bioavailable forms such as OAs, may promote growth of organisms and heavy metal complexation and diminish the potential effectiveness of various biochars for C sequestration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
[31]
LIN Y, MUNROE P, JOSEPH S, et al. Water extractable organic carbon in untreated and chemical treated biochars[J]. Chemosphere, 2012, 87:151-157.
Biochar, as a soil amendment, can increase concentrations of soil organic matter, especially water-extractable organic carbon (WEOC). This can affect the adsorption-desorption equilibrium between the dissolved solid phases in soil organic matter. Dissolved organic carbon (DOC) represents a small proportion of soil organic matter, but is of significant importance in the soil ecosystem due to its mobility and reactivity. Here, water extracts obtained from twelve non-herbaceous biochars (before, and after, chemical treatment with either H(3)PO(4) or KOH), were tested by Liquid Chromatography - Organic Carbon Detection (LC-OCD) to identify the effects of both pyrolysis conditions and chemical treatments on WEOC content. LC-OCD has the capacity to provide a fingerprint of WEOC, which allows analysis of the various fractions present. WEOC content was affected by both the pyrolysis temperature and the feedstock used. High mineral ash contents deriving from the feedstock can prompt thermochemical reactions of lignocelluloses to produce a relatively high WEOC content, which includes low molecular weight neutrals and humic acids as dominant components. A significant change in WEOC occurred during pyrolysis due to secondary reactions which resulted in a much lower WEOC in the high temperature biochars where fractions of low molecular weight acids and neutrals are dominant. Chemical treatments with H(3)PO(4) or KOH increased WEOC concentration, possibly by promoting hydrolysis reactions on biochar surfaces. These observations assist in assessing the contribution of biochar additions to the soil ecosystem and demonstrate the utility of LC-OCD in providing an understanding of how biochar additions to soil can alter DOC.Copyright © 2011 Elsevier Ltd. All rights reserved.
[32]
WU H M, QI Y S, DONG L, et al. Revealing the impact of pyrolysis temperature on dissolved organic matter released from the biochar prepared from Typha orientalis[J]. Chemosphere, 2019, 228:264-270.
Biochars derived from wetland biomass have been extensively applied in water and wastewater treatments. This study investigated the quantity and chemical quality of dissolved organic matter (DOM) released from the biochar prepared from the typical wetland plant (Typha orientalis) at different pyrolysis temperatures (300-700 °C) by using fluorescence excitation-emission (EEM) spectrophotometry with parallel factor analysis (PARAFAC) and UV-Visible spectroscopy. The results showed that the content of DOM released from biochars at low pyrolysis temperatures (300-500 °C) was higher than that observed at high pyrolysis temperatures (600-700 °C). The distribution of DOM components (mainly including three humic acid-like substances, one fulvic acid-like substance and one tyrosine-like substance) varied significantly due to the increase of pyrolysis temperatures. The fulvic acid-like material was the key DOM component at the low pyrolysis temperature while the humic acid-like material became dominant at the high temperature. DOM quality indices also indicated that the percentage of the low molecular-weight DOM increased with the decreasing DOC concentration due to the higher temperatures. The results obtained in this study would be beneficial to guide the rational application of biochars in waste treatments.Copyright © 2019 Elsevier Ltd. All rights reserved.
[33]
WEI J, TU C, YUAN G D, et al. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar[J]. Environmental pollution, 2019, 251:56-65.
The capacity of biochar to take up heavy metals from contaminated soil and water is influenced by the pyrolysis temperature. We have prepared three biochar samples from Jerusalem artichoke stalks (JAS) by pyrolysis at 300, 500 and 700 °C, denoted as JAS300, JAS500, and JAS700, respectively. A variety of synchrotron-based techniques were used to assess the effect of pyrolysis temperature on the molecular properties and copper (Cu) sorption capacity of the samples. The content of oxygen-containing functional groups in the biochar samples decreased, while that of aromatic structures and alkaline mineral components increased, with a rise in pyrolysis temperature. Scanning transmission X-ray microscopy indicated that sorbed Cu(II) was partially reduced to Cu(I), but this process was more evident with JAS300 and JAS700 than with JAS500. Carbon K-edge X-ray absorption near edge structure spectroscopy indicated that Cu(II) cations were sorbed to biochar via complexation and Cu-π bonding. With rising pyrolysis temperature, Cu(II)-complexation weakened while Cu-π bonding was enhanced. In addition, the relatively high ash content and pH of JAS500 and JAS700 facilitated Cu precipitation and the formation of langite on the surface of biochar. The results of this investigation will aid the conversion of halophyte waste to useable biochar for the effective remediation of Cu-contaminated soil and water.Copyright © 2019 Elsevier Ltd. All rights reserved.
[34]
WEI J, TU C, YUAN G D, et al. Pyrolysis temperature-dependent changes in the characteristics of biochar-borne dissolved organic matter and its copper binding properties[J]. Bulletin of environmental contamination and toxicology, 2019, 103:169-174.
The dissolved organic matter (DOM) samples from biochars produced from Jerusalem artichoke stalks by pyrolysis at 300, 500, and 700 °C were characterized using a combination of spectroscopic techniques. Additionally, the binding affinities (long K) and the complexation capacities (C) of the DOM samples with Cu(II) were calculated to assess their Cu binding properties. The biochar-borne DOM contained mainly humic-like components (C1-C3) with a small amount of a protein-like component (C4). As the charring temperature increased, the concentrations of released DOM decreased. The low temperature biochar-borne DOM was found to have more carboxyl groups than its high temperature counterparts, and thus it had larger C values. In contrast, the high temperature biochar-borne DOM had larger long K values. Low temperature biochars, if applied in a large quantity, would alter copper mobility in the environment because of their high DOM contents and large copper binding capacities.
[35]
朱金霞, 孔德杰, 尹志荣. 农作物秸秆主要化学组成及还田后对土壤质量提升影响的研究进展[J]. 北方园艺, 2020, 5:146-153.
[36]
王立华, 林琦. 热解温度对畜禽粪便制备的生物质炭性质的影响[J]. 浙江大学学报, 2014, 41(2):185-190.
[37]
CHEN C M, SPARKS D L. Multi-elemental scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy assessment of organo-mineral associations in soils from reduced environments[J]. Environmental chemistry, 2015, 1:64-73.
[38]
STRAATHOF A L, CHINCARINI R, COMANS N, et al. Dynamics of soil dissolved organic carbon pools reveal both hydrophobic and hydrophilic compounds sustain microbial respiration[J]. Soil biology and biochemistry, 2014, 79:109-116.
[39]
MALERBA A D, KAISER K, TAMBONE F, et al. Hydrophilic and hydrophobic fractions of water-soluble organic matter in digestates obtained from different organic wastes[J]. International biodeterioration & biodegradation, 2014, 94:73-78.

基金

广东省农业科学院低碳农业与碳中和研究中心“基于农业废弃物还田利用对土壤碳转化及固碳效应研究”(XTXM202204)
国家自然科学基金项目“生物炭调控可溶性有机物微生物转化过程及机理”(42207316)
广东省农科院新兴团队项目“土壤质量与污染控制”(202120TD)
广东省科技计划项目“广东省稻田不同耕作模式碳足迹及固碳效应野外科学观测研究站”(2021B1212050020)
2022年省级涉农统筹整合转移支付资金“2022年江门市本级推广耕地质量提升技术-菜地化肥减施增效与有机肥替代技术试验示范”(江财农[2021]126号)
PDF(1446 KB)

文章所在专题

土壤重金属污染

957

Accesses

0

Citation

Detail

段落导航
相关文章

/