
生物炭对农药吸附机理及功能化研究进展
Mechanism and Functionalization of Biochar for Pesticide Adsorption: Research Progress
农药是农业生产中重要的投入品,农业耕作时,农药不合理使用、农药抗性、环境因素等限制,使得农药有效利用率较低。农药污染会导致土壤功能紊乱,农药暴露还可能对人类健康造成急性、慢性和远期危害。生物炭作为一种全新的材料,因具有高度芳香性、优良吸附性及环境友好性,可用于固定/降解污染物,并最大限度地降低土壤污染风险,是一种性能优良的土壤污染修复材料。本研究归纳总结了国内外研究成果,综述了环境污染物新型阻控材料——生物炭的特性及形成机制,并对农药吸附机理和实现功能化的途径做了简要论述。
Pesticide is an important input in agricultural production. Due to the restricting elements such as pesticide improper use, pesticide resistance and environmental factors, the effective utilization rate of pesticide is low. Pesticide pollution of soil can lead to soil dysfunction, and the exposure of pesticide may cause acute, chronic and long-term harm to human health. As a new material, biochar can be used to fix/degrade pollutants and minimize the risk of soil pollution with its high aromatic character, excellent absorbability and environmental friendliness. In this paper, the characteristics and formation mechanism of biochar, its adsorption mechanism of pesticides and the pathway of functionalization are briefly discussed by summarizing the research results at home and abroad.
生物炭 / 农药 / 环境 / 改性 / 吸附 {{custom_keyword}} /
biochar / pesticide / environment / modification / adsorption {{custom_keyword}} /
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
郑永权, 董丰收. 农药残留与分析[M]. 北京: 化学工业出版社, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
The ubiquitous problem of pesticide in aquatic environment are receiving worldwide concern as pesticide tends to accumulate in the body of the aquatic organism and sediment soil, posing health risks to the human. Many pesticide formulations had introduced due to the rapid growth in the global pesticide market result from the wide use of pesticides in agricultural and non-agricultural sectors. The occurrence of pesticides in the water body is derived by the runoff from the agricultural field and industrial wastewater. Soluble pesticides were carried away by water molecules especially during the precipitation event by percolating downward into the soil layers and eventually reach surface waters and groundwater. Consequently, it degrades water quality and reduces the supply of clean water for potable water. Long-time exposure to the low concentration of pesticides had resulted in non-carcinogenic health risks. The conventional method of pesticide treatment processes encompasses coagulation-flocculation, adsorption, filtration and sedimentation, which rely on the phase transfer of pollutants. Those methods are often incurred with a relatively high operational cost and may cause secondary pollution such as sludge formation. Advanced oxidation processes (AOPs) are recognized as clean technologies for the treatment of water containing recalcitrant and bio-refractory pollutants such as pesticides. It has been adopted as recent water purification technology because of the thermodynamic viability and broad spectrum of applicability. This work provides a comprehensive review for occurrence of pesticide in the drinking water and its possible treatment.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
张志恒, 胡秀卿, 汪雯, 等. 农药对健康及环境影响药迹模型的构建与应用[J]. 农药学学报, 2018, 20(6):765-775.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
周艳明, 曲甍甍, 姜辉, 等. 欧美农药环境降解动力学评估方法比较[J]. 生态毒理学报, 2017, 12(4):59-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
NATASHA,
Selenium (Se) is an essential trace element for humans and animals, although controversial for different plant species. There exists a narrow line between essential, beneficial and toxic levels of Se to living organisms which greatly varies with Se speciation, as well as the type of living organisms. Therefore, it is crucial to monitor its solid- and solution-phase speciation, exposure levels and pathways to living organisms. Consumption of Se-laced food (cereals, vegetables, legumes and pulses) is the prime source of Se exposure to humans. Thus, it is imperative to assess the biogeochemical behavior of Se in soil-plant system with respect to applied levels and speciation, which ultimately affect Se status in humans. Based on available relevant literature, this review traces a plausible link among (i) Se levels, sources, speciation, bioavailability, and effect of soil chemical properties on selenium bioavailability/speciation in soil; (ii) role of different protein transporters in soil-root-shoot transfer of Se; and (iii) speciation, metabolism, phytotoxicity and detoxification of Se inside plants. The toxic and beneficial effects of Se to plants have been discussed with respect to speciation and toxic/deficient concentration of Se. We highlight the significance of various enzymatic (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione peroxidase) and non-enzymatic (phytochelatins and glutathione) antioxidants which help combat Se-induced overproduction of reactive oxygen species (ROS). The review also delineates Se accumulation in edible plant parts from soils containing low or high Se levels; elucidates associated health disorders or risks due to the consumption of Se-deficient or Se-rich foods; discusses the potential role of Se in different human disorders/diseases.Copyright © 2017 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
江桂斌, 宋茂勇. 环境暴露于健康效应[M]. 北京: 科学出版社, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
王平平. 改性生物炭对莠去津和烟嘧磺隆的吸附机理及环境行为影响研究[D]. 北京: 中国农业科学院, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
吴迟. 生物炭对土壤中乙氧氟草醚环境行为及生物有效性影响[D]. 沈阳: 沈阳农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
Biochar is a stable carbon-rich by-product synthesized through pyrolysis/carbonization of plant- and animal-based biomass. An increasing interest in the beneficial application of biochar has opened up multidisciplinary areas for science and engineering. The potential biochar applications include carbon sequestration, soil fertility improvement, pollution remediation, and agricultural by-product/waste recycling. The key parameters controlling its properties include pyrolysis temperature, residence time, heat transfer rate, and feedstock type. The efficacy of biochar in contaminant management depends on its surface area, pore size distribution and ion-exchange capacity. Physical architecture and molecular composition of biochar could be critical for practical application to soil and water. Relatively high pyrolysis temperatures generally produce biochars that are effective in the sorption of organic contaminants by increasing surface area, microporosity, and hydrophobicity; whereas the biochars obtained at low temperatures are more suitable for removing inorganic/polar organic contaminants by oxygen-containing functional groups, electrostatic attraction, and precipitation. However, due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain. In this review, a succinct overview of current biochar use as a sorbent for contaminant management in soil and water is summarized and discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
In this work, bio-char, a mass productive by-product of biomass fast pyrolysis, was adopted as an adsorbent to remove tetracycline (TC) from aqueous solution. To enhance the adsorption capacity, a simple modification of bio-char with acid and alkali was carried out. Bio-char samples were characterized by Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm. The results show that the alkali treated bio-char possesses larger surface area than those of raw and acid treated bio-chars, and accordingly exhibits a more excellent adsorption performance (58.8 mg/g) than the other two bio-chars and other adsorbents reported previously. The graphite-like structure of bio-char facilitates the formation of π-π interactions between ring structure in tetracycline molecule and graphite-like sheets. The surface area showed significant effects on TC adsorption as well as O-containing functional groups, whereas the initial pH of solution has small effects on TC adsorption under the experimental conditions.Copyright © 2012 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
Diverse biochars produced from various feedstock sources (i.e., plant- and animal-wastes) at different pyrolysis temperatures (PTs) were characterized for their structural properties and sorption behaviors of aqueous microcystin-LR (MC-LR). Results indicated that MC-LR sorption capability of tested biochars varied as a function of biochar structural properties. Sorption mechanisms involved electrostatic attraction, pore-filling, hydrogen-bonding effect and π-π electron donor-acceptor interaction, but predominant mechanisms varied for different biochars. At the same PT (300 or 600°C), chicken manure-derived biochars (CMBs) exhibited stronger MC-LR sorption than others, with sorption coefficient (K) of 6.321-15.529Lg and 6.354-8.294Lg at aqueous equilibrium concentration (C) of 40 and 200μgL, respectively. Higher mesoporosity, the point of zero charge and total surface groups concentration related to higher ash content of CMBs, which might be indispensable for enhancing MC-LR sorption. This study suggested that CMBs have great potential as low-cost sustainable sorbents to abate MC-LR contamination.Copyright © 2017 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production.Published by Elsevier Ltd.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
We investigated the activation of hydrogen peroxide (H2O2) by biochars (produced from pine needles, wheat, and maize straw) for 2-chlorobiphenyl (2-CB) degradation in the present study. It was found that H2O2 can be effectively activated by biochar, which produces hydroxyl radical ((•)OH) to degrade 2-CB. Furthermore, the activation mechanism was elucidated by electron paramagnetic resonance (EPR) and salicylic acid (SA) trapping techniques. The results showed that biochar contains persistent free radicals (PFRs), typically ∼ 10(18) unpaired spins/gram. Higher trapped [(•)OH] concentrations were observed with larger decreases in PFRs concentration, when H2O2 was added to biochar, indicating that PFRs were the main contributor to the formation of (•)OH. This hypothesis was supported by the linear correlations between PFRs concentration and trapped [(•)OH], as well as kobs of 2-CB degradation. The correlation coefficients (R(2)) were 0.723 and 0.668 for PFRs concentration vs trapped [(•)OH], and PFRs concentration vs kobs, respectively, when all biochars pyrolyzed at different temperatures were included. For the same biochar washed by different organic solvents (methanol, hexane, dichloromethane, and toluene), the correlation coefficients markedly increased to 0.818-0.907. Single-electron transfer from PFRs to H2O2 was a possible mechanism for H2O2 activation by biochars, which was supported by free radical quenching studies. The findings of this study provide a new pathway for biochar implication and insight into the mechanism of H2O2 activation by carbonaceous materials (e.g., activated carbon and graphite).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
Biochar, a massive byproduct of biomass pyrolysis during biofuel generation, is a potential P source for the mitigation of P depletion. However, the chemical and biological effect of the release of P from biochar is still unclear. In this study, two types of Lysinibacillus strains (Lysinibacillussphaericus D-8 and Lysinibacillus fusiformis A-5) were separated from a sediment and their P-solubilizing characteristics to biochar was first reported. Compared with the bacterial mixture W-1 obtained from a bioreactor, the introduction of A-5 and D-8 significantly improved P solubilization. The release of P from biochar by A-5 and D-8 reached 54% and 47%, respectively, which is comparable to that under rigorous chemical conditions. SEM images and XPS spectra demonstrated that the physicochemical properties of the biochar surface have changed in the process which may be caused by the activities of the microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
Firms must adapt to a business environment in constant flux. Economic and political factors and the constant interruption of new technologies force firms and organizations to change and to adapt, so that they are not left behind. Over recent years, the development of disruptive innovations has completely revolutionized past scenarios. These innovations break with what is already established and firms from various sectors face no choice other than to incorporate them into their project management portfolios, so as to ensure survival and business sustainability. Using MIVES methodology as its foundation, a business sustainability management model is presented in this paper for the management of disruptive innovation projects that a firm may wish to develop within a given sector. The management model is designed to facilitate disruptive innovation project management for firms within technological-industrial sectors, by assessing the sustainability of the project. The model is applied to two firms, one from the machine-tooling sector and another from the construction sector. Finally, a sensitivity analysis was performed, the results of which verified the validity and the stability of the proposed model.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
Biochar has been studied for remediation of heavy metal-contaminated soils by many researchers. When in external conditions, biochar in soils ages, which can transform its structural properties and adsorption capacity. This study was conducted with two oxidation processes, HNO3/H2SO4 and NaOH/H2O2, to simulate the effects of biochar in acid and alkaline soil conditions. The results show that the oxygen-containing functional groups increased in aged biochar, which led to improve the ratio of oxygen and carbon (O/C). Nitro functional groups were found in the acid-oxidation treated biochar. Destroyed ditches and scars were observed on the surface of aged biochar and resulted in growth in their specific surface area and porosity. Specific surface area increased by 21.1%, 164.9%, and 63.0% for reed-derived biochar treated with water washing, acid oxidation, and basic oxidation, respectively. Greater peaks in the Fourier Transform Infrared Spectroscopy (FTIR) results were found in C–O and O–H on the surface of field-aged biochar. Meanwhile, mappings of energy-dispersive spectroscopy showed that biochar aged in soil was abundant in minerals such as silicon, iron, aluminum, and magnesium. In summary, biochar subjected to wet oxidation aging had an increased capacity to immobilize Cd compared to unaged biochar, and the adsorption capacity of oxidized biochar increased by 28.4% and 13.15% compared to unaged biochar due to improvements in porosity and an increase in functional groups.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
Biochar amendments can reduce nitrate (NO3) leaching in agricultural soil. It has been hypothesized that functional groups on the biochar surface from oxidation can increase NO3 sorption. This study evaluates the effect of chemical oxidation of biochar on NO3 sorption characteristics. Eight biochars, made from wood and corn cobs, underwent sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2) oxidation and then assessed for NO3 sorption capacity using batch isotherm methods. The unoxidized and oxidized biochar produced at low temperatures (400 degrees C) had no significant NO3 sorption. Oxidized biochars produced at higher temperatures (600 degrees C and 700 degrees C) had calculated maximum NO3 sorption capacities (S-max) ranging from 0.50 to 3.97 mg NO3-N g(-1). Biochar oxidations with 50 mmol NaClOg(-1) (N50) in combination with an acid wash (AW) had the largest estimated sorption capacities of 3.68, 3.97, and 1.46 mg NO3-N g(-1) for CTN50,AW, BW3(N50,AW), and CC3(N50,AW), respectively. Sorption capacity of wood-based biochars was higher than corn cob biochars due to increased oxidation as measured by total acid group content (TAGC). Wood biochar Smax values were correlated with Delta TAGC (R-2 = 0.86), with a slope of 1.2 mu mol NO3-N mu mol TAGC(-1) suggesting that cationic bridging of NO3 to oxidized sites is the primary mechanism for NO3 sorption. (c) 2019 Elsevier B.V.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
计海洋, 汪玉瑛, 刘玉学, 等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报, 2018, 32(11):2281-2287.
生物炭因具有制备原料来源广泛、比表面积大、孔隙发达、富含碳素、表面官能团丰富等特点而被广泛用于土壤改良、污染物去除、固碳减排等方面。近年来,研究发现将生物炭进行物理、化学或生物改性,会强化生物炭功能,有利于生物炭的高效利用。本文综述了生物炭及改性生物炭的制备,理化性质分析及其在土壤、水体、大气中的应用,并将改性前后生物炭进行比较,客观分析了目前生物炭应用所存在的实际问题,为生物炭及改性生物炭的制备、功能强化及拓展应用提供了一定的理论依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
Modified biochar (BC) is reviewed in its preparation, functionality, applications and regeneration. The nature of precursor materials, preparatory conditions and modification methods are key factors influencing BC properties. Steam activation is unsuitable for improving BC surface functionality compared with chemical modifications. Alkali-treated BC possesses the highest surface functionality. Both alkali modified BC and nanomaterial impregnated BC composites are highly favorable for enhancing the adsorption of different contaminants from wastewater. Acidic treatment provides more oxygenated functional groups on BC surfaces. The Langmuir isotherm model provides the best fit for sorption equilibria of heavy metals and anionic contaminants, while the Freundlich isotherm model is the best fit for emerging contaminants. The pseudo 2(nd) order is the most appropriate model of sorption kinetics for all contaminants. Future research should focus on industry-scale applications and hybrid systems for contaminant removal due to scarcity of data. Copyright © 2016 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
鞠梦灿, 严丽丽, 简铃, 等. 氮掺杂生物炭材料的制备及其在环境中的应用[J]. 化工进展, 2022, 41(10).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |