壳聚糖对植物病原体的作用机制及其影响因素

隋振全, 范金石, 尹崇山, 毛金超

中国农学通报. 2022, 38(3): 121-126

PDF(1196 KB)
PDF(1196 KB)
中国农学通报 ›› 2022, Vol. 38 ›› Issue (3) : 121-126. DOI: 10.11924/j.issn.1000-6850.casb2021-0240
植物保护·农药

壳聚糖对植物病原体的作用机制及其影响因素

作者信息 +

Chitosan: The Action Mechanism on Plant Pathogens and Its Influencing Factors

Author information +
History +

摘要

壳聚糖具有优良的抗菌活性以及天然无毒、生物相容性良好、可生物降解和可再生、来源广泛的特性。为充分理解壳聚糖对植物病原体的作用,本文归纳了壳聚糖对植物病原体的4种作用机制:电荷作用、沉积作用、螯合作用和诱导作用,分析了影响壳聚糖对植物病原体作用效果的主要因素:病原体、壳聚糖、使用条件及其他方面。同时,指出了目前壳聚糖对植物病原体作用研究领域的问题:研究方法多样、研究结果间存在差异甚至出现截然相反结论。建议通过采用先进的仪器设备、建立三维生物细胞模型以及采用统一研究方法或制定研究标准等措施来强化壳聚糖对植物病原体作用的研究,以期为开发以壳聚糖为活性成分的新型植物病害防治剂提供理论指导。

Abstract

Chitosan has excellent antibacterial activity and natural non-toxicity, good biocompatibility, biodegradability and renewability, and extensive raw material sources. In order to fully understand the effect of chitosan on plant pathogens, this paper summarized four kinds of action modes of chitosan on plant pathogens, namely charge effect, sedimentation, chelation and induction, analyzed the main factors affecting the bacteriostatic effects of chitosan on plant pathogen, including pathogen, chitosan, using conditions and the others. Meanwhile, it pointed out some problems in the research field: various methods, different results, and even opposite conclusion of the research on chitosan acting on plant pathogen at present. Adopting advanced equipment, establishing three-dimensional biological cell model and adopting unified research method or developing research standard were suggested to improve the study of chitosan acting on plant pathogen, so as to provide a theoretical basis for the development of novel plant disease control agent with chitosan as the active ingredient.

关键词

壳聚糖 / 植物病原体 / 抗菌活性 / 作用机制 / 影响因素

Key words

chitosan / plant pathogen / antibacterial activity / mechanism of action / influencing factor

引用本文

导出引用
隋振全 , 范金石 , 尹崇山 , 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素. 中国农学通报. 2022, 38(3): 121-126 https://doi.org/10.11924/j.issn.1000-6850.casb2021-0240
SUI Zhenquan , FAN Jinshi , YIN Chongshan , MAO Jinchao. Chitosan: The Action Mechanism on Plant Pathogens and Its Influencing Factors. Chinese Agricultural Science Bulletin. 2022, 38(3): 121-126 https://doi.org/10.11924/j.issn.1000-6850.casb2021-0240

参考文献

[1]
ABBASZADEH S, RASHIDIPOUR M, KHOSRAVI P, et al. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells[J]. International journal of nanomedicine, 2020, 15:5963-5975.
[2]
ZIMET P, MOMBRU A W, MOMBRU D, et al. Physico-chemical and antilisterial properties of nisin-incorporated chitosan/carboxymethyl chitosan films[J]. Carbohydr polym, 2019, 219:334-343.
[3]
WARDHANI R A K, ASRI L, RACHMAWATI H, et al. Physical-chemical crosslinked electrospun colocasia esculenta tuber protein-chitosan-poly (ethylene oxide) nanofibers with antibacterial activity and cytocompatibility[J]. International journal of nanomedicine, 2020, 15:6433-6449.
[4]
TORRES-ROSAS R, TORRES-GOMEZ N, MORENO-RODRIGUEZ A, et al. Anti-inflammatory and antibacterial activity of the chitosan/chlorhexidine gel commercial preparation for postexodontia treatment: an in vitro study[J]. European journal of dentistry, 2020, 14(3):397-403.
[5]
DOAN C T, TRAN T N, NGUYEN V B, et al. Bioprocessing of squid pens waste into chitosanase by Paenibacillus sp. tku047 and its application in low-molecular weight chitosan oligosaccharides production[J]. Polymers (Basel), 2020, 12(5):1163-1179.
[6]
SHAHINI SHAMS ABADI M, MIRZAEI E, BAZARGANI A, et al. Antibacterial activity and mechanism of action of chitosan nanofibers against toxigenic clostridioides (clostridium) difficile isolates[J]. Annali di igiene: medicina preventiva e dicomunità, 2020, 32(1):72-80.
[7]
REZAZADEH N H, BUAZAR F, MATROODI S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles[J]. Scientific reports, 2020, 10(1):19615-19628.
[8]
WALCZAK K, SCHIERZ G, BASCHE S, et al. Antifungal and surface properties of chitosan-salts modified PMMA denture base material[J]. Molecules, 2020, 25(24):5899-5910.
[9]
YUAN X, ZHENG J, JIAO S, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production[J]. Carbohydr polym, 2019, 220:60-70.
[10]
ABDALLAH Y, LIU M, OGUNYEMI S O, et al. Bioinspired green synjournal of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae[J]. Molecules, 2020, 25(20):4795-4813.
[11]
SINGH R K, MARTINS V, SOARES B, et al. Chitosan application in vineyards (Vitis vinifera L. cv. Tinto Cao) induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes[J]. International journal of molecular sciences, 2020, 21(1):306-316.
[12]
ABD EL-HACK M E, EL-SAADONY M T, SHAFI M E, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review[J]. International journal of biological macromolecules, 2020, 164:2726-2744.
[13]
LI J, ZHUANG S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives[J]. European polymer journal, 2020, 138:109984-109996.
[14]
ALVEN S, ADERIBIGBE B A. Chitosan and cellulose-based hydrogels for wound management[J]. International journal of molecular sciences, 2020, 21(24):9656-9685.
[15]
KATAS H, LIM C S, NOR AZLAN A Y H, et al. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from lignosus rhinocerotis and chitosan[J]. Saudi pharmaceutical journal, 2019, 27(2):283-292.
[16]
ALQAHTANI F, ALEANIZY F, EL TAHIR E, et al. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea[J]. International journal of nanomedicine, 2020, 15:7877-7887.
[17]
WU D, WAN J, LU J, et al. Chitosan coatings on lecithin stabilized emulsions inhibit mycotoxin production by Fusarium pathogens[J]. Food control, 2018, 92:276-285.
[18]
SAITO H, SAKAKIBARA Y, SAKATA A, et al. Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus[J]. PLoS one, 2019, 14(5):e0217504-0217526.
[19]
CHANDRASEKARAN M, KIM K D, CHUN S C. Antibacterial activity of chitosan nanoparticles: a review[J]. Processes, 2020, 8(9):1173-1194.
[20]
JAMSHIDI D, SAZEGAR M R. Antibacterial activity of a novel biocomposite chitosan/graphite based on Zinc-grafted mesoporous silica nanoparticles[J]. International journal of nanomedicine, 2020, 15:871-883.
[21]
LIU H, DU Y, YANG J, et al. Structural characterization and antimicrobial activity of chitosan/betaine derivative complex[J]. Carbohydrate polymers, 2004, 55(3):291-297.
[22]
VISHU KUMAR A B, VARADARAJ M C, GOWDA L R, et al. Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli[J]. Biochemical journal, 2005, 391(Pt 2):167-175.
[23]
ZIENKIEWICZ-STRZALKA M, DERYLO-MARCZEWSKA A, SKORIK Y A, et al. Silver nanoparticles on chitosan/silica nanofibers: characterization and antibacterial activity[J]. International journal of molecular sciences, 2019, 21(1):166-185.
[24]
ALAM O, QIAO X, NATH T K. The effect of Ca-bearing contents in chitosan on Pb (2+), Cd (2+) and Cu (2+) adsorption and its adsorption mechanism[J]. Journal of environmental health science and engineering, 2020, 18(2):1401-1414.
[25]
WEISSPFLOG J, GUNDEL A, VEHLOW D, et al. Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan[J]. Molecules, 2020, 25(11):2482-2496.
[26]
GRANDE-TOVAR C D, CHAVES-LOPEZ C, SERIO A, et al. Chitosan coatings enriched with essential oils: effects on fungi involved in fruit decay and mechanisms of action[J]. Trends in food science & technology, 2018, 78:61-71.
[27]
CHOUHAN D, MANDAL P. Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-a review[J]. International journal of biological macromolecules, 2021, 166:1554-1569.
[28]
SUAREZ-FERNANDEZ M, MARHUENDA-EGEA F C, LOPEZ-MOYA F, et al. Chitosan induces plant hormones and defenses in tomato root exudates[J]. Frontiers in plant science, 2020, 11:1677-1691.
[29]
MANJUNATHA G, ROOPA K S, PRASHANTH G N, et al. Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation[J]. Pest management science, 2008, 64(12):1250-1257.
[30]
YIN H, DU Y, DONG Z. Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors[J]. Frontiers in plant science, 2016, 7:522-526.
[31]
VARMA R, VASUDEVAN S. Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus[J]. ACS omega, 2020, 5(32):20224-20230.
[32]
ORELLANO M S, ISAAC P, BRESER M L, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens[J]. Carbohydr polym, 2019, 213:1-9.
[33]
CHEN Y L, CHOU C C. Factors affecting the susceptibility of Staphylococcus aureus CCRC 12657 to water soluble lactose chitosan derivative[J]. Food microbiology, 2005, 22(1):29-35.
[34]
ABID S, HUSSAIN T, NAZIR A, et al. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management[J]. International journal of biological macromolecules, 2019, 135:1222-1236.
[35]
TAKAHASHI T, IMAI M, SUZUKI I, et al. Growth inhibitory effect on bacteria of chitosan membranes regulated with deacetylation degree[J]. Biochemical engineering journal, 2008, 40(3):485-491.
[36]
BYUN S M, NO H K, HONG J H, et al. Comparison of physicochemical, binding, antioxidant and antibacterial properties of chitosans prepared from ground and entire crab leg shells[J]. International journal of food science & technology, 2012, 48(1):136-142.
[37]
SAHARIAH P, CIBOR D, ZIELINSKA D, et al. The Effect of molecular weight on the antibacterial activity of N,N,N-trimethyl chitosan (TMC)[J]. International journal of molecular sciences, 2019, 20(7):1743-1756.
[38]
MORIN-CRINI N, LICHTFOUSE E, TORRI G, et al. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry[J]. Environmental chemistry letters, 2019, 17(4):1667-1692.
[39]
GARCIA L G S, GUEDES G M M, SILVA M L Q, et al. Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm[J]. Carbohydr polym, 2018, 195:662-669.
[40]
ZHENG L Y, ZHU J F. Study on antimicrobial activity of chitosan with different molecular weights[J]. Carbohydrate polymers, 2003, 54(4):527-530.
[41]
KAPPEL L, MUNSTERKOTTER M, SIPOS G, et al. Chitin and chitosan remodeling defines vegetative development and trichoderma biocontrol[J]. PLoS pathog, 2020, 16(2):e1008320-1008356.
[42]
SANTOS V P, MARQUES N S S, MAIA P, et al. Seafood waste as attractive source of chitin and chitosan production and their applications[J]. International journal of molecular sciences, 2020, 21(12):4290-4306.
[43]
AL-HMOUD L, ABU FARA D, RASHID I, et al. Influence of chitin source and polymorphism on powder compression and compaction: application in drug delivery[J]. Molecules, 2020, 25(22):5269-5291.
[44]
CHIEN R C, YEN M T, MAU J L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells[J]. Carbohydr polym, 2016, 138:259-264.
[45]
CHANG A K T, FRIAS R R, ALVAREZ L V, et al. Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp.[J]. Biocatalysis and agricultural biotechnology, 2019, 17:189-195.
[46]
BABII O, WANG Z, LIU G, et al. Low molecular weight chitosan nanoparticles for CpG oligodeoxynucleotides delivery: impact of molecular weight, degree of deacetylation, and mannosylation on intracellular uptake and cytokine induction[J]. International journal of biological macromolecules, 2020, 159:46-56.
[47]
CHIEN P J, CHOU C C. Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of tankan citrus fruit (Citrus tankan Hayata)[J]. Journal of the science of food and agriculture, 2006, 86(12):1964-1969.
[48]
TEAIMA M H, ELASALY M K, OMAR S A, et al. Eco-friendly synjournal of functionalized chitosan-based nanoantibiotic system for potential delivery of linezolid as antimicrobial agents[J]. Saudi pharmaceutical journal, 2020, 28(7):859-868.
[49]
PIEGAT A, ZYWICKA A, NIEMCZYK A, et al. Antibacterial activity of N,O-acylated chitosan derivative[J]. Polymers (Basel), 2020, 13(1):107-119.
[50]
TSAI G J, SU W H. Antibacterial activity of shrimp chitosan against Escherichia coli[J]. Journal of food proteation, 1999, 62(3):239-243.
[51]
ARDILA N, DAIGLE F, HEUZEY M C, et al. Effect of chitosan physical form on its antibacterial activity against pathogenic bacteria[J]. Journal of food science, 2017, 82(3):679-686.
[52]
NO H K, KIM S H, LEE S H, et al. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time[J]. Carbohydrate polymers, 2006, 65(2):174-178.

基金

青海省盐湖资源综合利用重点实验室开放基金项目“反浮选-冷结晶“尾盐中浮选药剂的回收分离研究”(Q-SYS-201516-KF-02)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1196 KB)

Accesses

Citation

Detail

段落导航
相关文章

/