逆境胁迫下甜菜生理特性的研究进展

李志, 薛姣, 耿贵, 王宇光, 於丽华

中国农学通报. 2021, 37(24): 39-47

PDF(1256 KB)
PDF(1256 KB)
中国农学通报 ›› 2021, Vol. 37 ›› Issue (24) : 39-47. DOI: 10.11924/j.issn.1000-6850.casb2021-0113
农学·农业基础科学

逆境胁迫下甜菜生理特性的研究进展

作者信息 +

The Physiological Characteristics of Beets Under Stress: Research Progress

Author information +
History +

摘要

当前影响甜菜生长发育的主要因素有水分、温度、土地盐碱化等,因此,研究甜菜逆境条件下生长和生理特性变化是当前的热点话题。为了研究水分、温度和土地盐碱化对甜菜生长发育的影响,归纳了逆境胁迫对植物生长的影响,总结了逆境下甜菜地上部和根系的形态变化和生理指标变化趋势。叶片是植物重要营养器官之一,主要生理功能是进行呼吸作用、光合作用、蒸腾作用和养分转化作用。根系是植物生长发育的关键部位,起到固定、支撑植物、吸收运输养分的作用。由此得出甜菜对逆境胁迫的响应是通过改变外部形态和生理生化指标而完成的。建议今后进一步研究甜菜和环境间相互作用机制,加强对甜菜产业体系的管理及发展,为提高甜菜的产量和品质提供参考。

Abstract

At present, the main factors affecting the growth and development of sugar beet are water, temperature, soil salinization, etc. Therefore, it is a hot topic to study the changes of growth and physiological characteristics of sugar beet under stress. In order to study the effects of water, temperature and soil salinization on the growth and development of sugar beet, the effects of adversity stress on plant growth were summarized, and the morphological and physiological changes of aboveground parts and roots of sugar beet under stress were reviewed. Leaf is one of the most important vegetative organs of plants, and its main physiological functions are respiration, photosynthesis, transpiration and nutrient transformation. Root system is the key part of plant growth and development, which plays a role of fixing, supporting plants and absorbing and transporting nutrients. It is concluded that the response of sugar beet to adversity stress is accomplished by changing the external morphology and physiological and biochemical indexes. It is suggested that the interaction mechanism between sugar beet and the environment should be further studied in the future, and the management and development of sugar beet industry system should be strengthened so as to improve the yield and quality of sugar beet.

关键词

甜菜 / 地上部 / 根系 / 形态特征 / 生理特性 / 逆境胁迫

Key words

sugar beet / aboveground / root / morphological characteristics / physiological characteristics / stress

引用本文

导出引用
李志 , 薛姣 , 耿贵 , 王宇光 , 於丽华. 逆境胁迫下甜菜生理特性的研究进展. 中国农学通报. 2021, 37(24): 39-47 https://doi.org/10.11924/j.issn.1000-6850.casb2021-0113
Li Zhi , Xue Jiao , Geng Gui , Wang Yuguang , Yu Lihua. The Physiological Characteristics of Beets Under Stress: Research Progress. Chinese Agricultural Science Bulletin. 2021, 37(24): 39-47 https://doi.org/10.11924/j.issn.1000-6850.casb2021-0113

参考文献

[1]
武维华. 植物生理学[M]. 2版.北京: 科学出版社, 2008: 48.
[2]
Luković J, Zorić L, Piperac J, et al. The Analysis of Petiole Histological Traits Through an Evaluation of Water Deficit Tolerance of Sugar Beet Genotypes[J]. Sugar Tech, 2016, 18(2):160-167.
[3]
Champoux M C, Wang G, Sarkarung S, et al. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers[J]. Theoretical and applied genetics, 1995, 90(7-8):969-981.
This research was undertaken to identify and map quantitative trait loci (QTLs) associated with five parameters of rice root morphology and to determine if these QTLs are located in the same chromosomal regions as QTLs associated with drought avoidance/tolerance. Root thickness, root:shoot ratio, root dry weight per tiller, deep root dry weight per tiller, and maximum root length were measured in three replicated experiments (runs) of 203 recombinant inbred lines grown in a greenhouse. The lines were from a cross between indica cultivar Co39 andjaponica cultivar Moroberekan. The 203 RI lines were also grown in three replicated field experiments where they were drought-stressed at the seedling, early vegetative, and late-vegetative growth stage and assigned a visual rating based on leaf rolling as to their degree of drought avoidance/tolerance. The QTL analysis of greenhouse and field data was done using single-marker analysis (ANOVA) and interval analysis (Mapmaker QTL). Most QTLs that were identified were associated with root thickness, root/shoot ratio, and root dry weight per tiller, and only a few with deep root weight. None were reliably associated with maximum root depth due to genotype-by-experiment interaction. Root thickness and root dry weight per tiller were the characters found to be the least influenced by environmental differences between greenhouse runs. Correlations of root parameters measured in greenhouse experiments with field drought avoidance/tolerance were significant but not highly predictive. Twelve of the fourteen chromosomal regions containing putative QTLs associated with field drought avoidance/tolerance also contained QTLs associated with root morphology. Thus, selecting for Moroberekan alleles at marker loci associated with the putative root QTLs identified in this study may be an effective strategy for altering the root phenotype of rice towards that commonly associated with drought-resistant cultivars.
[4]
梅四卫, 朱涵珍, 王术, 等. 小麦根系研究现状及展望[J]. 基因组学与应用生物学, 2018, 37(12):5448-5454.
[5]
吕春华, 王宇光, 於丽华, 等. 甜菜耐盐性分子及育种研究进展[J]. 中国糖料, 2019, 41(02):65-70.
[6]
苗青霞, 方燕, 陈应龙. 小麦根系特征对干旱胁迫的响应[J]. 植物学报, 2019, 54(05):652-661.
[7]
张净, 王锦霞, 郭萌萌, 等. 甜菜幼苗对干旱胁迫的适应机制[J]. 中国农学通报, 2020, 36(32):1-7.
[8]
邹利茹, 张福顺, 刘乃新, 等. 甜菜干旱胁迫响应研究进展[J]. 中国糖料, 2021, 43(01):36-44.
[9]
李文晶. 低温胁迫甜菜的叶绿体蛋白质组学差异分析[D]. 哈尔滨:黑龙江大学, 2020.
[10]
於丽华, 王宇光, 康杰, 等. 盐胁迫对甜菜植株显微结构影响的初步研究[J]. 中国农学通报, 2018, 34(34):14-19.
[11]
李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005(S1):118-127.
[12]
孙晓钰. 花生等农作物耐湿涝性研究进展[J]. 现代农业, 2021(01):50-51.
[13]
孟繁静. 植物生理学[M]. 武汉: 华中科技大学出版社, 2000:28-30,276.
[14]
Esfahanian E, Nejadhashemi A P, Abouali M, et al. Development and evaluation of a comprehensive drought index[J]. Journal of Environmental Management, 2017, 185:31-43.
Droughts are known as the world's costliest natural disasters impacting a variety of sectors. Despite their wide range of impacts, no universal drought definition has been defined. The goal of this study is to define a universal drought index that considers drought impacts on meteorological, agricultural, hydrological, and stream health categories. Additionally, predictive drought models are developed to capture both categorical (meteorological, hydrological, and agricultural) and overall impacts of drought. In order to achieve these goals, thirteen commonly used drought indices were aggregated to develop a universal drought index named MASH. The thirteen drought indices consist of four drought indices from each meteorological, hydrological, and agricultural categories, and one from the stream health category. Cluster analysis was performed to find the three closest indices in each category. Then the closest drought indices were averaged in each category to create the categorical drought score. Finally, the categorical drought scores were simply averaged to develop the MASH drought index. In order to develop predictive drought models for each category and MASH, the ReliefF algorithm was used to rank 90 variables and select the best variable set. Using the best variable set, the adaptive neuro-fuzzy inference system (ANFIS) was used to develop drought predictive models and their accuracy was examined using the 10-fold cross validation technique. The models' predictabilities ranged from R = 0.75 for MASH to R = 0.98 for the hydrological drought model. The results of this study can help managers to better position resources to cope with drought by reducing drought impacts on different sectors.Copyright © 2016 Elsevier Ltd. All rights reserved.
[15]
Li M X, Ma Z G. Soil moisture drought detection and multi-temporal variability across China[J]. Science China Earth Sciences, 2015, 58(10):1798-1813.
[16]
杨阳, 申双和, 马绎皓, 等. 干旱对作物生长的影响机制及抗旱技术的研究进展[J]. 科技通报, 2020, 36(01):8-15.
[17]
刘华君, 王燕飞, 李翠芳, 等. 我国甜菜抗旱与耐盐性研究进展[J]. 中国糖料, 2010(04):52-54,58.
[18]
李国龙. 甜菜苗期对干旱适应的生理生化及分子机制研究[D]. 呼和浩特:内蒙古农业大学, 2011.
[19]
张启成, 刘雪平, 杜莹路. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 农业与技术, 2017, 37(02):9.
[20]
温琦, 赵文博, 张幽静, 等. 植物干旱胁迫响应的研究进展[J]. 江苏农业科学, 2020, 48(12):11-15.
[21]
韩凯虹, 张继宗, 王伟婧, 等. 水分胁迫及复水对华北寒旱区甜菜生长及品质的影响[J]. 灌溉排水学报, 2015, 34(04):63-68.
[22]
Sorkheh K, Shiran B, Khodambashi M, et al. Exogenous proline alleviates the effects of H2O2-induced oxidative stress in wild almond species[J]. Russian Journal of Plant Physiology, 2012, 59(6):788-798.
[23]
王俊强. 干旱和盐度对甜菜发芽和生长的影响[J]. 现代园艺, 2010(05):6-8.
[24]
中国农业科学院甜菜研究所主编. 甜菜栽培[M]. 北京: 农业出版社, 1963:18-32.
[25]
李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J]. 生态学报, 2010, 30(19):5140-5150.
[26]
肖爽. 干旱对棉花微根系与地上部形态生理的影响及细根差异蛋白质组学分析[D]. 保定:河北农业大学, 2020.
[27]
田宏先, 王瑞霞, 施毅, 等. 油菜根系对苗期水分胁迫的形态及生理响应[J]. 农业科技通讯, 2020(08):148-153.
[28]
唐利华, 樊华, 李阳阳, 等. 甜菜叶片、根系含水量及根系活力对干旱胁迫的反应[J]. 新疆农垦科技, 2019, 42(01):8-10.
[29]
李开峰, 张富仓, 祁有玲. 冬小麦根区土壤水肥空间耦合对根系生长及活力的影响[J]. 干旱地区农业研究, 2009, 27(03):48-52,83.
[30]
Verslues P E, Agarwal M, Katiyar-Agarwal S, et al. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status[J]. The Plant Journal, 2006, 45(4):523-539.
[31]
Romano A, Sorgonà A, Lupini A, et al. Morpho-physiological responses of sugar beet (Beta vulgaris L.) genotypes to drought stress[J]. Acta Physiologiae Plantarum, 2013, 35(3):853-865.
[32]
李晓杰. 浅议玉米的涝害与防涝抗涝措施[J]. 农村实用科技信息, 2009(08):8.
[33]
肖潺, 叶殿秀, 陈昊明. 中国大陆雨涝时空特征[J]. 灾害学, 2017, 32(01):85-89.
[34]
Ren B Z, Zhang J W, Li X, et al. Effects of waterlogging on the yield and growth of summer maize under field conditions[J]. Canadian Journal of Plant Science, 2014, 94(1):23-31.
[35]
利容千, 王建波. 植物逆境细胞及生理学[M]. 武汉: 武汉大学出版社, 2002. 12:53.
[36]
Dennis E S, Dolferus R, Ellis M, et al. Molecular strategies for improving waterlogging tolerance in plants[J]. Journal of Experimental Botany, 2000, 51(342):9.
The development of new barleys tolerant of abiotic and biotic stresses is an essential part of the continued improvement of the crop. The domestication of barley, as in many crops, resulted in a marked truncation of the genetical variation present in wild populations. This process is significant to agronomists and scientists because a lack of allelic variation will prevent the development of adapted cultivars and hinder the investigation of the genetic mechanisms underlying performance. Wild barley would be a useful source of new genetic variation for abiotic stress tolerance if surveys identify appropriate genetic variation and the development of marker-assisted selection allows efficient manipulation in cultivar development. There are many wild barley collections from all areas of its natural distribution, but the largest are derived from the Mediterranean region. The results of a range of assays designed to explore abiotic stress tolerance in barley are reported in this paper. The assays included; sodium chloride uptake in wild barley and a mapping population, effects for delta 13C and plant dry weight in wheat aneuploids, effects of photoperiod and vernalization in wild barley, and measurements of root length in wild barley given drought and nitrogen starvation treatments in hydroponic culture. There are examples of the use of wild barley in breeding programmes, for example, as a source of new disease resistance genes, but the further exploration of the differences between wild barley and cultivars is hampered by the lack of good genetic maps. In parallel to the need for genetic studies there is also a need for the development of good physiological models of crop responses to the environment. Given these tools, wild barley offers the prospect of a 'goldmine' of untapped genetic reserves.
[37]
王婧. 萱草耐涝性评价及生理生化机理研究[D]. 上海:上海应用技术大学, 2019.
[38]
Yordanova R Y, Christov K N, Popova L P. Antioxidative enzymes in barley plants subjected to soil flooding[J]. Environmental and Experimental Botany, 2004, 51(2):93-101.
[39]
Horchani F, Aloui A, Brouquisse R, et al. Physiological Responses of Tomato Plants (Solanum lycopersicum) as Affected by Root Hypoxia[J]. Journal of Agronomy and Crop Science, 2008, 194(4):297-303.
[40]
时明芝, 周保松. 植物涝害和耐涝机理研究进展[J]. 安徽农业科学, 2006(02):209-210.
[41]
刘周斌, 周宇健, 杨博智, 等. 植物抗涝性研究进展[J]. 湖北农业科学, 2015, 54(18):4385-4389,4393.
[42]
阿日文. 土壤水分对牡丹生长及生理特性影响的研究[D]. 长春:吉林农业大学, 2015.
[43]
曹宏鑫, 杨太明 等. 花期渍害胁迫下冬油菜生长及产量模拟研究[J]. 中国农业科技导报, 2015, 17(01):137-145.
[44]
张宇, 蒋跃林. 花期渍水胁迫对冬油菜生长及产量的影响[J]. 农学学报, 2014, 4(10):24-27.
[45]
尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J]. 中国农学通报, 2007(01):105-110.
[46]
李文静, 朱进, 彭玉全, 等. 淹水胁迫对油麦菜生长、生理和解剖结构的影响[J]. 植物生理学报, 2020, 56(10):2233-2240.
[47]
时伟伟, 刘冉冉, 付婷婷, 等. 盐及水淹对甜菜幼苗生长和生理指标的影响[J]. 中国糖料, 2016, 38(02):8-11.
[48]
高敬文, 苏瑶, 沈阿林. 渍害胁迫下小麦生长的响应机理及调控措施研究进展[J]. 应用生态学报, 2020, 31(12):4321-4330.
[49]
Herzog M, Striker G G, Colmer T D, et al. Mechanisms of waterlogging tolerance in wheat--a review of root and shoot physiology[J]. Plant, cell & environment, 2016, 39(5):1068-1086.
[50]
卢妍. 湿地植物对淹水条件的响应机制[J]. 自然灾害学报, 2010, 19(04):147-151.
[51]
李金才, 魏凤珍, 王成雨, 等. 孕穗期土壤渍水逆境对冬小麦根系衰老的影响[J]. 作物学报, 2006(09):1355-1360.
[52]
叶翠. 温度变化对植物生长期的影响[J]. 广东蚕业, 2020, 54(10):7-8.
[53]
Shimono H, Hasegawa T, Fujimura S, et al. Responses of leaf photosynjournal and plant water status in rice to low water temperature at different growth stages[J]. Field Crops Research, 2004, 89(1):71-83.
[54]
迟晓峰, 韩琳. 对植物逆境胁迫的研究[J]. 种子科技, 2019, 37(13):122-124.
[55]
Uemura M, Tominaga Y, Nakagawara C, et al. Responses of the plasma membrane to low temperatures[J]. Physiologia Plantarum, 2006, 126(1):81-89.
[56]
唐秀英, 王会民, 龙起樟, 等. 低温胁迫对水稻苗期根系影响的蛋白质组学研究[J]. 华北农学报, 2019, 34(06):82-88.
[57]
李娟, 沙晓梅, 帕提古力·阿不力孜, 等. 低温胁迫对棉花幼苗生长的影响[J]. 耕作与栽培, 2019(04):1-5.
[58]
Loel J, Hoffmann C M. Relevance of Osmotic and Frost Protecting Compounds for the Winter Hardiness of Autumn Sown Sugar Beet[J]. Journal of Agronomy and Crop Science, 2015, 201(4):301-311.
[59]
韩亚钦, 徐修容. 甜菜苗期冻害的初步研究[J]. 中国甜菜, 1988(03):18-24.
[60]
刘美君, 丁鹿, 王丽娜, 等. 低温胁迫对紫花苜蓿根系呼吸作用的影响[J]. 草原与草坪, 2020, 40(04):22-26,33.
[61]
唐秀英, 王会民, 龙起樟, 等. 低温胁迫对水稻苗期根系影响的蛋白质组学研究[J]. 华北农学报, 2019, 34(06):82-88.
[62]
胡涛. 低温对水稻根系生理特性及其基因表达的影响[D]. 沈阳:沈阳农业大学, 2019: 52.
[63]
章建新, 陈新红, 窦秉德, 等. 高温诱导甜菜高脚苗研究初报[J]. 新疆农业大学学报, 2001(01):39-42.
[64]
戴凌燕. 甜高粱苗期对苏打盐碱胁迫的适应性机制及差异基因表达分析[D]. 沈阳:沈阳农业大学, 2012: 137.
[65]
Wang X, Chang L, Wang B, et al. Comparative Proteomics of Thellungiella halophila Leaves from Plants Subjected to Salinity Reveals the Importance of Chloroplastic Starch and Soluble Sugars in Halophyte Salt Tolerance[J]. Mol Cell Proteomics, 2013, 12(8):2174-2195.
[66]
钮力亚, 王伟, 王伟伟, 等. 盐胁迫下小麦品种生理指标的变化规律[J]. 中国农学通报, 2019, 35(2):1-4.
[67]
Asmaa E H, Ahmed M A, Karima E D, et al. Role of Salicylic Acid to Improve Physiological Characters and Bio-Chemical Markers of Soybean (Glycine max L.) Under Sea Salt Stress[J]. Springer International Publishing, 2017, 11(4):547-556.
[68]
严畅, 黄河清, 毛震宇, 等. 小麦幼苗对盐碱胁迫的生理生化响应特征[J]. 新课程(中学), 2017(08):159-161.
[69]
Paliwal K V, Maliwal G L. Effects of Salts on the Growth and Chemical Composition of Okra (Abelmoschus Esculentus) and Sponge-Gourd (Luffa Cylindrica)[J]. Journal of Horticultural Science, 2015, 47(4):517-524.
[70]
Chartzoulakis K, Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages[J]. Scientia Horticulturae, 2000, 86(3):247-260.
[71]
Baha N, Bekki A. An Approach of Improving Plant Salt Tolerance of Lucerne (Medicago sativa) Grown Under Salt Stress: Use of Bio-inoculants[J]. Journal of Plant Growth Regulation, 2015, 34(1):169-182.
[72]
唐琨, 朱伟文, 周文新, 等. 土壤pH对植物生长发育影响的研究进展[J]. 作物研究, 2013, 27(02):207-212.
[73]
Kovacs I, Ayaydin F, Oberschall A, et al. Immunolocalization of a novel annexin- like protein encoded by a stress and abscisic acid responsive gene in alfalfa[J]. Plant Journal, 1998, 15(2):185-197.
[74]
Chitteti B R, Peng Z. Proteome and Phosphoproteome Differential Expression under Salinity Stress in Rice (Oryza sativa) Roots[J]. Journal of Proteome Research, 2007, 6(5):1718-1727.
[75]
谷娇娇, 胡博文, 贾琰, 等. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019(4):176-182.
[76]
Muchate N S, Nikalje G C, Rajurkar N S, et al. Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance[J]. Springer US, 2016, 82(4):371-406.
[77]
陈莉, 刘连涛, 马彤彤, 等. 褪黑素对盐胁迫下棉花种子抗氧化酶活性及萌发的影响[J]. 棉花学报, 2019, 31(5):438-447.
[78]
冯瑞军, 伍国强. 甜菜耐盐性生理及其分子水平研究进展[J]. 中国糖料, 2015, 37(06):60-65,70.
[79]
文章, 耿贵, 王宇光, 等. 盐胁迫下耐盐甜菜生理及其蛋白差异表达分析[J]. 中国农学通报, 2020, 36(32):8-16.
[80]
Bagum S A, Billah M, Hossain N, et al. Detection of salt tolerant hybrid maize as germination indices and seedling growth performance[J]. Bulgarian Journal of Agricultural Science, 2017, 23(5):793-798.
[81]
黄春燕, 苏文斌, 郭晓霞, 等. 15个甜菜品种对盐碱胁迫的生理响应及耐盐碱性评价[J]. 北方农业学报, 2020, 48(04):1-9.
[82]
Dadkhah A. Effect of Long Term Salt Stress on Gas Exchange and Leaf Carbohydrate Contents in Two Sugar Beet (Beta vulgaris L.) Cultivars[J]. Russian Agricultural Sciences, 2015, 41(6):423-428.
[83]
Yamada N, Sakakibara S, Tsutsumi K, et al. Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet[J]. Journal of Plant Physiology, 2011, 168(14):1609-1616.
Proline transporters (ProTs) originally described as highly selective transporters for proline, have been shown to also transport glycinebetaine (betaine). Here we examined and compared the transport properties of Bet/ProTs from betaine accumulating (sugar beet, Amaranthus, and Atriplex,) and non-accumulating (Arabidopsis) plants. Using a yeast mutant deficient for uptake of proline and betaine, it was shown that all these transporters exhibited higher affinity for betaine than proline. The uptake of betaine and proline was pH-dependent and inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). We also investigated choline transport by using a choline transport-deficient yeast mutant. Results revealed that these transporters exhibited a higher affinity for choline uptake rather than betaine. Uptake of choline by sugar beet BvBet/ProT1 was independent of the proton gradient and the inhibition by CCCP was reduced compared with that for uptake of betaine, suggesting different proton binding properties between the transport of choline and betaine. Additionally, in situ hybridization experiments revealed the localization of sugar beet BvBet/ProT1 in phloem and xylem parenchyma cells.Copyright © 2011 Elsevier GmbH. All rights reserved.
[84]
刘洋. 不同甜菜品种对盐碱胁迫的生理生化响应[D]. 哈尔滨:东北农业大学, 2014.
[85]
Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47(1):39-50.
[86]
桑利敏. 甜菜幼苗对中性盐和碱性盐胁迫的生理应答特性[D]. 哈尔滨:东北农业大学, 2017.
[87]
秦景, 贺康宁, 谭国栋, 等. NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响[J]. 应用生态学报, 2009, 20(04):791-797.
[88]
赵秋月, 张广臣. 碱性盐胁迫对3种番茄根系活力和光合色素的影响[J]. 江苏农业科学, 2015, 43(11):219-223.
[89]
江超, 夏阳, 杨克强. 盐胁迫下紫花苜蓿苗期根部生长及生理特性研究[J]. 北方园艺, 2014(05):68-72.
[90]
郭瑞, 周际, 杨帆, 等. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(06):683-692.
[91]
刘少华, 朱学伸, 闫敏, 等. NaCl浸种对盐胁迫下杂交稻幼苗根系生长特性的影响[J]. 西南大学学报:自然科学版, 2020, 42(08):59-65.
[92]
Ghoulam C, Fares K. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.)[J]. Seed Science and Technology. 2001, 29(02):357-364.
[93]
刘磊. 混合碱性盐对甜菜苗期根系及根际土壤酶和微生物的影响[D]. 哈尔滨:东北农业大学, 2017.
[94]
赖淼. 甜菜叶片响应干旱胁迫的蛋白质组差异分析[D]. 呼和浩特:内蒙古农业大学, 2020.

基金

国家糖料产业技术体系项目“甜菜种植制度”(CARS-170209)
国家自然科学基金“甜菜T510品系BvBHLH93转录因子功能及其耐盐调控机制分析”(31701487)
黑龙江省自然科学基金“转录因子BvWRKY62调控甜菜耐盐性的分子机理研究”(YQ2020037C)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1256 KB)

28

Accesses

0

Citation

Detail

段落导航
相关文章

/