
干旱对马尾松幼苗光合作用及相关生理的影响
Effects on Photosynthetic and Resistant Physiological Characteristics of Pinus massoniana Seedlings Under Drought Stress
为了解干旱胁迫对马尾松幼苗生长、生理及光合特性的影响,揭示不同抗旱时期马尾松幼苗中各种物质含量的变化规律及抗旱机制,以1年生马尾松幼苗为试材,采用温室土培盆栽进行干旱胁迫处理,对胁迫0、15、30、45、60天的马尾松幼苗分别测定相关生理生化及光合特性指标。结果表明,随干旱胁迫程度加剧和胁迫时间延长,马尾松幼苗根冠比略上升,严重胁迫下苗高生长量、地径生长量及干物质积累,比正常浇水(CK)分别降低了69.89%、70.73%、75.58%;马尾松幼苗中的过氧化物歧化酶、过氧化物酶的活性呈先升后降趋势,处理30天时中等和严重胁迫处理均达峰值699.81、817.82 U/g,比正常供水分别上升75.57%、104.01%;45天时过氧化物歧化酶的活性仍较高,而严重胁迫下过氧化物酶活性达峰值319.00 U/(g·min),比正常浇水分别高171.88%,与正常浇水呈显著性差异;丙二醛、脯氨酸含量逐渐上升;生长指标根冠比与生理指标丙二醛、蒸腾速率、茎生物量、气孔导度之间,气孔导度与根生物量均呈很强的正相关(r=1);但脯氨酸与净光合速率呈显著负相关(r=-1)。马尾松幼苗通过调整生长和生物量分配抵御干旱胁迫;水分亏缺引起马尾松幼苗蒸腾作用和光合作用减弱;干旱初期通过快速增加抗氧化性酶活性保护幼苗过氧化伤害,中后期则增加渗透调节物质,维持细胞内渗透压缓解膜质损伤;马尾松通过调整光合及相关生理机制,制约与协调不同组织应对干旱胁迫。
The effect of drought on photosynthesis and physiological response of Pinus massoniana seedlings and the underlying mechanisms were investigated. One-year-old P. massoniana seedlings were used as materials, and greenhouse soil potting was used to carry out drought stress treatment. After treatment for 0, 15, 30, 45 and 60 days, some indexes were determined to study the effects of continuous drought on the growth of P. massoniana seedlings. The results showed that with the intensification of drought stress degree and the extension of stress time, the seedling root-shoot ratio increased slightly. Under severe stress, the seedling height growth, ground diameter growth and dry matter accumulation decreased by 69.89%, 70.73% and 75.58%, respectively. The activity of peroxides dismutase and peroxidase in P. massoniana seedlings increased at first and then decreased, and reached the peak values of 699.81 and 817.82 U/g, until thirtieth day of medium and severe stress, which increased by 75.57% and 104.01% than normal water supply. At 45 th day, the activity of peroxidase was still high, under severe stress, while the peroxidase content reached a peak of 319.00 U/(g·min), which was 171.88% higher than that of normal watering and showed a significant difference from normal watering. The content of malondialdehyde and proline increased gradually. The index of root-shoot ratio and physiological indicators of malondialdehyde, transpiration rate, stem biomass, stomatal conductance, stomatal conductance and root biomass showed a strong positive correlation (r=1); however, proline had a strong negative correlation with net photosynthetic rate (r=-1). P. massoniana seedlings resisted drought stress by adjusting growth and biomass distribution. Transpiration and photosynthesis were weakened by water deficit. In the early stage of drought, antioxidant enzyme activity was rapidly increased to protect the peroxidation damage of seedlings. In the middle and later stages, osmotic substances were added to maintain the osmotic pressure in cells to alleviate the membrane damage. P. massoniana restricted and coordinated various tissues and organs to deal with drought stress by adjusting photosynthesis and the related physiological mechanism.
马尾松幼苗 / 干旱胁迫 / 光合特性 / 生理生化特性 / 相关性 {{custom_keyword}} /
Pinus massoniana seedlings / drought stress / photosynthetic characteristics / physiological and biochemical properties / correlation {{custom_keyword}} /
[1] |
黎祜琛, 印治军. 林木抗旱性及抗旱造林技术研究综述[J]. 世界林业研究, 2003,16(4):17-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Stress in plants could be defined as any change in growth condition(s) that disrupts metabolic homeostasis and requires an adjustment of metabolic pathways in a process that is usually referred to as acclimation. Metabolomics could contribute significantly to the study of stress biology in plants and other organisms by identifying different compounds, such as by-products of stress metabolism, stress signal transduction molecules or molecules that are part of the acclimation response of plants. These could be further tested by direct measurements, correlated with changes in transcriptome and proteome expression and confirmed by mutant analysis. In this review, we will discuss recent application of metabolomics and system biology to the area of plant stress response. We will describe approaches such as metabolic profiling and metabolic fingerprinting as well as combination of different 'omics' platforms to achieve a holistic view of the plant response stress and conduct detailed pathway analysis.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
季孔庶, 孙志勇, 方彦. 林木抗旱性研究进展[J]. 南京林业大学学报:自然科学版, 2006,30(6):123-128.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
吴金山, 张景欢, 李瑞杰, 等. 植物对干旱胁迫的生理机制及适应性研究进展[J]. 山西农业大学学报:自然科学版, 2017,37(6):452-456.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
石峰. 干旱胁迫对垂柳生理特性的影响[J]. 陕西林业科技, 2019,47(2):6-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
张治安, 张美善, 蔚荣海. 植物生理学实验指导[M]. 北京: 中国农业科学技术出版社, 2004: 25-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
陈贵, 胡文玉, 谢甫绨, 等. 提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J]. 植物生理学通讯, 1991,27(1):44-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
李燕, 薛立, 吴敏. 树木抗旱机理研究进展[J]. 生态学杂志, 2007(11):1857-1866.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
陈斐, 王润元, 王鹤龄, 等. 干旱胁迫下春小麦干物质积累和分配及其模拟[J]. 干旱区研究, 2017,34(6):1418-1425.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
姜慧芳, 任小平. 干旱胁迫对花生叶片SOD活性和蛋白质的影响[J]. 作物学报, 2004,30(2):169-174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
邹春静, 韩士杰, 徐文铎, 等. 沙地云杉生态型对干旱胁迫的生理生态响应[J]. 应用生态学报, 2003,14(9):1446-1450.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
莫荣海, 丁贵杰, 罗仙英, 等. 不同家系马尾松苗木对持续干旱的响应[J]. 森林与环境学报, 2018,38(4):473-480.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
单立山, 李毅, 石万里, 等. 土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响[J]. 水土保持通报, 2015,35(6):106-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
宋学贵, 王彬, 周光良, 等. 干旱胁迫对竹柳光合特性的影响[J]. 四川林业科技, 2014,35(5):40-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
丁贵杰, 周志春, 王章荣, 等. 马尾松纸浆用材树种培育与利用[M]. 北京: 中国林业出版社, 2006: 1-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
胡晓健, 欧阳献, 喻方圆. 干旱胁迫对不同种源马尾松苗木生长及生物量的影响[J]. 江西农业大学学报, 2010,32(3):510-516.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
靳月, 李铁华, 文仕知, 等. 干旱胁迫对闽楠幼苗的生长和生理特性的影响[J]. 中南林业科技大学学报, 2018,38(9):50-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
朱教君, 康宏樟, 李智辉, 等. 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性的影响[J]. 生态学报, 2005,25(10):2527-2533.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
黄华, 梁宗锁, 韩蕊莲. 持续干旱胁迫对女贞形态与生长的影响[J]. 林业科学, 2011,47(6):48-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
崔豫川, 张文辉, 李志萍. 干旱和复水对栓皮栎幼苗生长和生理特性的影响[J]. 林业科学, 2014,50(7):66-73.
以2年生栓皮栎幼苗为试验材料,在盆栽条件下,采用称质量控水方法,设置不同的水分胁迫梯度,研究干旱胁迫和复水对栓皮栎幼苗生长、渗透调节和抗氧化系统的影响。结果表明:1) 干旱胁迫使栓皮栎幼苗的株高、基径、叶片数、干鲜质量均呈下降趋势,主根长和一级侧根长则随着胁迫度的提高而增长;2) 叶片保护酶活性均随胁迫时间的延长和胁迫度的提高呈先升后降的趋势,而丙二醛(MDA)含量逐渐升高,可溶性蛋白和脯氨酸含量先升高后下降;3) 干旱胁迫下,栓皮栎幼苗根、茎、叶中Na+含量随胁迫度的提高而下降,K+含量则变化不大,根和茎中的Zn2+含量减少,叶中Zn2+含量则呈上升的趋势;4)复水后,保护酶活性基本恢复到对照水平。MDA含量下降,但重度胁迫条件下仍高于对照(CK),且差异显著;可溶性蛋白和脯氨酸含量下降,与CK差异不显著;各器官中的矿质元素含量均基本恢复到CK水平。由此可见,在干旱胁迫下,栓皮栎幼苗减少地上部分生长、增加地下部分生长以适应干旱环境。在干旱胁迫前期和轻度胁迫下,栓皮栎幼苗通过增加保护酶活性、渗透调节物质等保护自身不受干旱胁迫伤害,随着胁迫时间延长和胁迫度提高,超出其耐受限度,保护酶活性下降,可溶性蛋白和脯氨酸含量减少;复水后,栓皮栎的各生理指标得到恢复,表现出较强的耐旱特性。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
宋丽梅, 代微然, 任健, 等. 干旱胁迫及复水处理对百脉根叶片丙二醛含量及抗氧化酶活性的影响[J]. 云南农业大学学报, 2014,29(1):37-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
严青青, 张巨松, 代健敏, 等. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019,45(7):1128-1135.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
吕春华, 陈芬, 王伟伟, 等. 干旱胁迫对小叶红叶石楠光合及其他生理作用的影响[J]. 江苏林业科技, 2015,42(1):11-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |