苗期甜菜根系分泌物的分布特征研究

王秋红, 宋柏权, 王孝纯, 景若楠, 杨曦娅, 周建朝

中国农学通报. 2021, 37(17): 13-18

PDF(3027 KB)
PDF(3027 KB)
中国农学通报 ›› 2021, Vol. 37 ›› Issue (17) : 13-18. DOI: 10.11924/j.issn.1000-6850.casb2020-0477
农学·农业基础科学

苗期甜菜根系分泌物的分布特征研究

作者信息 +

Distribution Characteristics of Beet Root Exudates in Seedling Stage

Author information +
History +

摘要

根系分泌物的量及分布特征直接影响着根际微生物的种群、结构和功能,进而间接影响着根际养分的有效性和作物的生长。本研究通过砂培盆栽培养,收集得到甜菜苗期的根系分泌物,利用高效液相色谱测定了根系分泌物中的3大类物质,包括土壤中常见的17种氨基酸、10种有机酸和4种糖类物质,并分析得到了到甜菜根表面不同距离的各种氨基酸、有机酸和糖类物质的含量及其分布特征。结果表明:总的来看,有机氮高效品种‘KWS8138’根系分泌物含量普遍高于有机氮低效品种‘Beta176’,距离根表面0~5 mm范围内降幅较大,随后逐渐趋于平缓。总氨基酸含量、甘氨酸、丙氨酸、丝氨酸、精氨酸和酪氨酸变化趋势相似。各种糖类物质的含量变化顺序为:葡萄糖>果糖>蔗糖>半乳糖。有机酸中草酸和甲酸的含量变化也是距离根表面越远越低缓。因此,沿甜菜根表面形成了根系分泌物的分布梯度,在为根际微生物提供能源和碳源的同时,对植物根际养分的有效吸收利用提供理论参考。

Abstract

The content and distribution of root exudates directly affect the population, structure and function of rhizosphere microorganisms, which indirectly affect the availability of rhizosphere nutrients and crop growth. In this study, the root exudates of sugar beet seedlings were collected and cultured in a sand culture basin. The three major types of root exudates were measured by high performance liquid chromatography, including the common 17 amino acids, 10 organic acids and 4 saccharides in soil. The contents and distribution of amino acids, organic acids and saccharides were analyzed at different distances from the surface of the beet root. The results showed that: in general, the content of root exudates from the organic nitrogen efficient variety ‘KWS8138’ was higher than that from the organic nitrogen inefficient variety ‘Beta176’, which decreased greatly from 0 to 5 mm from the root surface, and then gradually became flat. The total amino acid content, glycine, alanine, serine, arginine and tyrosine showed similar trends. The order of saccharides content was: glucose>fructose>sucrose>galactose. The content changing trend of oxalic acid and formic acid in the organic acid was that the farther away from the root surface, the lower and slower it was. Therefore, the distribution gradient of root exudates was formed along the surface of beet roots, which provided energy and carbon sources for rhizosphere microorganisms. The study could be a theoretical reference for the effective absorption and utilization of plant rhizosphere nutrients.

关键词

甜菜 / 根系分泌物 / 分布特征 / 根际 / 氨基酸 / 有机酸 / 糖类物质

Key words

sugar beet / root exudates / distribution characteristics / rhizosphere / amino acid / organic acid / saccharides

引用本文

导出引用
王秋红 , 宋柏权 , 王孝纯 , 景若楠 , 杨曦娅 , 周建朝. 苗期甜菜根系分泌物的分布特征研究. 中国农学通报. 2021, 37(17): 13-18 https://doi.org/10.11924/j.issn.1000-6850.casb2020-0477
Wang Qiuhong , Song Baiquan , Wang Xiaochun , Jing Ruonan , Yang Xiya , Zhou Jianchao. Distribution Characteristics of Beet Root Exudates in Seedling Stage. Chinese Agricultural Science Bulletin. 2021, 37(17): 13-18 https://doi.org/10.11924/j.issn.1000-6850.casb2020-0477

参考文献

[1]
Haney C H, Samuel B S, Bush J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nature Plants, 2015,1(6):15051.
[2]
Oburger E, Jones D L. Sampling root exudates-mission impossible?[J]. Rhizosphere, 2018,6:116-133.
[3]
Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006,57:233-266.
[4]
Philippot L, Hallin S, Börjesson G, et al. Biochemical cycling in the rhizosphere having an impact on global change[J]. Plant Soil, 2009,321:61-81.
[5]
张福锁. 根分泌物及其在植物营养中的作用[J]. 北京农业大学学报, 1992,18(4):353-357.
[6]
Curl E A, Truelove B. The Rhizosphere[M]. Springer Berlin Heidelberg, 1986.
[7]
Heim A, Brunner I, Frey B, et al. Root exudation, organic acids, and element distribution in roots of Norway spruce seedlings treated with aluminum in hydroponics[J]. Journal of plant nutrition and soil science, 2001,164:519-526.
[8]
O'Sullivan C A, Whisson K, Treble K, et al. Biological nitrification inhibition by weeds, wild radish, brome grass, wild oats and annual ryegrass decrease nitrification rates in their rhizospheres[J]. Crop & Pasture Science, 2017,68:798-804.
[9]
王秋红, 郭亚宁, 胡晓航, 等. 不同有机氮效率的甜菜基因型筛选及差异分析[J]. 植物研究, 2017,37(4):563-571.
[10]
彭春雪, 耿贵, 於丽华, 等. 不同浓度钠对甜菜生长及生理特性的影响[J]. 植物营养与肥料学报, 2014,(2):59-465.
[11]
孙宝利, 黄金丽, 贺小蔚, 等. 高效液相色谱法测定土壤中有机酸[J]. 分析试验室, 2010,29(5):51-54.
[12]
侯松嵋, 孙敬, 何红波, 等. AQC柱前衍生反相高效液相色谱法测定土壤中氨基酸[J]. 分析化学, 2006,34(10):1395-1400.
[13]
蔡心尧, 朱叶. 高效液相色谱测定糖类[J]. 食品与发酵工业, 1985(5):13-22.
[14]
Haney C H, Samuel B S, Bush J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nature Plants, 2015,1(6):15051.
[15]
Badri D V, Vivanco J M. Regulation and function of root exudates[J]. Plant Cell & Environment, 2009,32:666-681.
[16]
Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant Soil, 2002,245:35-47.
[17]
Moe L A. Amino acids in the rhizosphere: from plants to microbes[J]. American Journal of Botany, 2013,100:1692-1705.
[18]
Farrar J, Hawes M, Jones D L, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003,84:827-837.
[19]
Yu Z, Zhang Q, Kraus T, et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils[J]. Biogeochemistry, 2002,61:173-198.
[20]
Grayston S J, Wang S, Campbell C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biology and Biochemistry, 1998,30:369-378.
[21]
Kuzyakov Y. Review: factors affecting rhizosphere priming effects[J]. Journal of Soil Science and Plant Nutrition, 2002,165:382-396.
[22]
Read D J, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?[J]. New Phytologist, 2003,157:475-492.
[23]
Jones D L, Darrah P R. Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere[J]. Plant & Soil, 1994,163(1):1-12.
[24]
Larrainzar E, Wienkoop S, Scherling C, et al. Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery[J]. Molecular Plant Microbe Interact, 2009,22:1565-1576.
[25]
Okumoto S, Funck D, Trovato M, et al. Editorial: amino acids of the glutamate family: functions beyond primary metabolism[J]. Frontiers in Plant Science, 2016,7:318.
[26]
Hoffland E. Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape[J]. Plant and Soil, 1992,140:279-289.
[27]
Dinkelaker B, Rmheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)[J]. Plant Cell & Environment, 2010,12(3):285-292.
[28]
Jones D L, Darrah P R. Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere[J]. Plant & Soil, 1996,178(1):153-160.

基金

财政部和农业农村部:国家现代农业产业技术体系资助,“甜菜养分管理与土壤肥料岗位”(CARS-170204)
黑龙江省科学基金项目“甜菜氮效率基因差异的生理机制研究”(C2018053)
黑龙江大学2019年创新训练项目“不同基因型甜菜种子引发对幼苗生理特性的影响”(2019176)
“不同氮效率基因型甜菜根系的差异研究”(2019180)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(3027 KB)

83

Accesses

0

Citation

Detail

段落导航
相关文章

/