
拮抗芽孢杆菌对蒙古黄芪主要药效成分的影响
Effects of Antagonistic Bacillus on the Main Active Components of Astragalus membranaceus var. mongholicus
探讨黄芪根腐病拮抗芽孢杆菌SXKF16-1(Bacillus atrophaeu)和SXKF16-2(B. methylotrophicus)对黄芪主要药效成分的影响,旨在为后续多功能制剂的开发提供依据。采用灌根法对健康黄芪苗浇注拮抗菌发酵液,HPLC-UV-ELSD法对10种药效成分进行测定。结果表明,毛蕊异黄酮葡萄糖苷、芒柄花苷、紫檀烷苷、异黄烷苷、毛蕊异黄酮、芒柄花素和黄芪皂苷Ⅳ、Ⅲ、Ⅱ、Ⅰ在各自标准曲线相应的线性范围内线性关系良好(r≥0.9950),试验测定结果可靠。拮抗芽孢杆菌SXKF16-1和SXKF16-2处理对药效成分毛蕊异黄酮葡萄糖苷、芒柄花苷、紫檀烷苷、异黄烷苷、毛蕊异黄酮、芒柄花素、黄芪皂苷Ⅱ、黄芪皂苷Ⅳ的含量均无明显影响,但显著促进黄芪皂苷Ⅰ和黄芪皂苷Ⅲ含量的升高。2组处理与对照相比,总黄酮含量均无明显变化,总皂苷含量显著升高。拮抗芽孢杆菌SXKF16-1和SXKF16-2对黄芪主要药效成分的含量无负面影响,可促进某些皂苷类成分的积累,具备开发为多功能制剂的潜力。
The effects of antagonistic Bacillus SXKF16-1 (Bacillus atrophaeu) and SXKF16-2 (B. methylophicus) on the main active components of Astragalus membranaceus var. mongholicus were investigated so as to provide a basis for the development of multi-functional preparations. Healthy A. membranaceus var. mongholicus seedlings were root-irrigated with the fermentation of antagonistic Bacillus, and ten effective components were determined by HPLC-UV-ELSD. There was a good linear relationship (r≥0.9950) in the corresponding linear range of the respective standard curve of calycosin-7-O-β-D-glucoside, ononin, (6aR,11aR)-9,10-dimethoxyptercarpan, 8,2'-dihydroxy-3,4-dimethoxyisoflavan-7-O-β-D-glucopyranoside, calycosin, formononetin, astragaloside Ⅳ, Ⅲ, Ⅱ, Ⅰ, and thus the test results were reliable. Treated with antagonistic Bacillus SXKF16-1 and SXKF16-2, the contents of such A. membranaceus var. mongholicus active components as calycosin-7-O-β-D-glucoside, ononin, (6aR,11aR)-9,10-dimethoxyptercarpan, 8,2'-dihydroxy-3,4-dimethoxyisoflavan-7-O-β-D-glucopyranoside, calycosin, formononetin, astragaloside Ⅱ and Ⅳ showed no significant change, but the contents of astragaloside Ⅰ and Ⅲ increased significantly. Compared with the control group, the content of total flavonoids in the two treatment groups had no significant change, while the content of total saponins increased significantly. Antagonistic Bacillus SXKF16-1 and SXKF16-2 have no negative effect on the content of main active components of A. membranaceus var. mongholicus, and can promote the accumulation of some saponins; and therefore have the potential of being developed into multi-functional preparations.
拮抗芽孢杆菌 / 黄芪 / 根腐病 / HPLC-UV-ELSD / 黄酮类 / 皂苷类 {{custom_keyword}} /
Antagonistic Bacillus / Astragalus membranaceus var. mongholicus / root rot / HPLC-UV-ELSD / flavonoids / saponins {{custom_keyword}} /
[1] |
薛倩倩, 李爱平, 李科, 等. 黄芪的质量评价研究概述及质量标志物研究策略初探[J]. 药物评价研究, 2019, 42(12):2459-2463.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
聂娟, 谢丽华, 马港圆, 等. 中药黄芪的化学成分及药理作用研究进展[J]. 湖南中医杂志, 2018, 34(7):228-231.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
杜国军, 秦雪梅, 李震宇, 等. 蒙古黄芪主产区2种不同种植模式黄芪药材的质量比较[J]. 中草药, 2013, 44(23):3386-3393.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
胡明勋, 郭宝林, 周然, 等. 山西浑源仿野生栽培蒙古黄芪的质量研究[J]. 中草药, 2012, 43(9):1829-1834.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
任小霞, 秦雪梅, 王梦亮, 等. 山西黄芪根腐病优势病原菌的鉴定及拮抗菌的多重筛选[J]. 中药材, 2016, 39(10):2173-2177.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
高芬, 赵晓霞, 秦雪梅, 等. 山西省蒙古黄芪根腐病优势致病菌群分析[J]. 植物保护学报, 2018, 45(4):878-885.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
刘凤波, 侯俊玲, 王文全, 等. 不同来源黄芪中黄芪总皂苷含量比较研究[J]. 中国现代中药, 2013, 15(8):650-654.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
熊一峰, 万燕晴, 李科, 等. 山西恒山地区蒙古传统黄芪和移栽黄芪的质量差异研究[J]. 中草药, 2017, 48(8):1635-1643.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
薛倩倩, 刘晓节, 李科, 等. 黄芪药材化学成分差异的研究进展[J]. 山西医科大学学报, 2018, 49(10):1259-1263.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
高芬, 郝锐, 秦雪梅, 等. 防治药用植物土传病害的芽胞杆菌制剂开发的制约因素分析[J]. 植物保护, 2017, 43(3):23-28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
张凯妮, 张蕾, 黄小琴, 等. 芽孢杆菌Bam22对油菜根肿病的防治效果研究[J]. 中国农学通报, 2020, 36(34):104-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
王亚娇, 栗秋生, 纪莉景, 等. 一株西瓜枯萎病生防细菌的鉴定与田间防效[J]. 微生物学通报, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
范瑛阁, 李莎, 赵静, 等. 枯草芽孢杆菌H1和H2对黄瓜的促生作用[J]. 江苏农业科学, 2015, 43(7):158-161.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
黄文茂, 韩丽珍, 王欢. 两株芽孢杆菌对花生幼苗生长及其根际土壤微生物群落结构的影响[J]. 微生物学通报, 2020, 47(11):3551-3563.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
吴东升. 根际促生菌对设施西瓜生长、品质及产量的影响[J]. 北方园艺, 2019(24):62-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
巩子毓, 高旭, 黄炎, 等. 连续施用生物有机肥提高设施黄瓜产量和品质的研究[J]. 南京农业大学学报, 2016, 39(5):777-783.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
刘德兴, 亓鑫, 孙中涛, 等. 多粘性芽孢杆菌对甜瓜生长及品质的影响[J]. 山东农业科学, 2017, 49(7):91-94,98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
The effect of Bacillus subtilis FZB24 on saffron ( Crocus sativus L.) was studied using saffron corms from Spain and the powdered form of B. SUBTILIS FZB24(R). Corms were soaked in water or in B. subtilis FZB24 spore solution for 15 min before sowing. Some corms were further soil drenched with the spore solution 6, 10 or 14 weeks after sowing. Growth and saffron stigma chemical composition were measured. Compared to untreated controls, application of B. subtilis FZB24 significantly increased leaf length, flowers per corm, weight of the first flower stigma, total stigma biomass; microbe addition also significantly decreased the time required for corms to sprout and the number of shoot sprouts. Compared to the controls, picrocrocin, crocetin and safranal compounds were significantly increased when the plants were soil drenched with the spore solution 14 weeks after sowing; in contrast crocin was highest in untreated controls. Results of this study suggest that application of B. subtilis FZB24 may provide some benefit to saffron growers by speeding corm growth (earlier shoot emergence) and increasing stigma biomass yield by 12 %. While some treatment conditions also increased saffron chemical composition, these were generally not the same treatments that simultaneously improved growth yields and thus, more study is required.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
宋胜男, 郜玉刚, 张雪, 等. 人参内生多黏类芽孢杆菌对农田人参生长和皂苷累积的影响[J]. 江苏农业科学, 2019, 47(11):155-160.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
冯世鑫, 莫长明, 唐其, 等. 枯草芽孢杆菌肥在罗汉果上应用的效应分析[J]. 广西植物, 2015, 35(6):807-811.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
刘惠娟, 梁建萍. 不同诱导分子对黄芪有效成分积累的影响[J]. 山西农业科学, 2017, 45(3):394-397.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
高芬, 赵晓霞, 闫欢, 等. 黄芪根腐病拮抗芽孢杆菌的筛选鉴定及其对根围细菌群落的影响[J]. 中国中药杂志, 2019, 44(18):3942-3947.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
叶如梦, 田锴, 胡海静, 等. 一株枯草芽孢杆菌对香蜂花的促生效果及关键代谢物积累的环境响应[J]. 应用与环境生物学报, 2020, 26(5):1035-1045.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
李震宇, 崔伊凡, 秦雪梅. 中药材质量评价的挑战与代谢组学应用于中药材质量评价的研究进展[J]. 中草药, 2018, 49(10):2221-2229.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
滕中秋, 付卉青, 贾少华, 等. 植物应答非生物胁迫的代谢组学研究进展[J]. 植物生态学报, 2011, 35(1):110-11
代谢组学技术是研究植物代谢的理想平台, 通过现代检测分析技术对胁迫环境下植物中代谢产物进行定性和定量分析, 可以监测其随时间变化的规律。而各种组学平台包括基因组学、转录组学及代谢组学的整合, 更是一个强有力的工具箱, 将所获得的不同组学的信息联系起来, 有利于从整体研究生物系统对基因或环境变化的响应, 如可判断代谢物的变化是从哪一个层面开始发生的, 帮助人们揭开复杂的植物胁迫应答机制。该文对近期代谢组学技术及其与蛋白质组学、基因组学技术相结合探索植物应答非生物胁迫的研究进行了综述。代谢组学的应用, 拓展了对植物耐受非生物胁迫分子机制的认识, 开展更多这方面的研究, 再通过植物代谢组学、转录组学、蛋白质组学和基因组学整合, 有助于从整体水平上把握植物胁迫应答机制。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
熊一峰. 黄芪皂苷检测规程建立与恒山黄芪成分积累分布规律研究[D]. 太原: 山西大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
高四云, 李科, 熊一峰, 等. 恒山仿野生黄芪绝对生长年限鉴别及黄酮和皂苷积累规律研究[J]. 药学学报, 2018, 53(1):147-154.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |