基于无人机多光谱遥感的大豆叶面积指数反演

王军, 姜芸

中国农学通报. 2021, 37(19): 134-142

PDF(2291 KB)
PDF(2291 KB)
中国农学通报 ›› 2021, Vol. 37 ›› Issue (19) : 134-142. DOI: 10.11924/j.issn.1000-6850.casb2020-0229
农业信息·科技教育

基于无人机多光谱遥感的大豆叶面积指数反演

作者信息 +

Inversion of Soybean Leaf Area Index Based on UAV Multispectral Remote Sensing

Author information +
History +

摘要

为给大豆科学管理提供基础数据,利用无人机多光谱遥感数据实现对大豆叶面积指数(LAI)的反演估值。从多种光谱植被指数中选出与LAI相关性较好的5种指数,分析探讨在田块尺度上,适用于东北地区的大豆叶面积指数的低空无人机遥感反演模型。结合田间实测LAI数据及模型精度及拟合效果,NDVI模型精度较好,但拟合效果较差,其余4种植被指数模型精度和拟合效果较好,拟合效果R2均达到了0.6以上;支持向量机模型决定系数R2达到0.688,均方根误差达0.016,具有更好的预测能力。2种模型均表明无人机多光谱遥感系统可以快速反演田间大豆叶面积指数,在指导精准农业生产方面具有实用意义。

Abstract

In order to provide basic data for the scientific management of soybean, the inversion and estimation of LAI was realized by using the multispectral remote sensing data of UAV. Five indices with good correlation with LAI were selected from various spectral vegetation indices, and the remote sensing inversion model of soybean leaf area index in northeast China was analyzed and discussed. The results show that except NDVI, the other four vegetation index models have better precision, and the determination coefficient R2 is more than 0.6; support vector machine model, the determination coefficient R2 is 0.688, and the root mean square error is 0.016, which has better prediction ability. Both models show that the UAV multispectral remote sensing system can quickly retrieve the soybean leaf area index in the field, which has practical significance in guiding precision agricultural production.

关键词

无人机 / 植被指数 / 回归分析 / 支持向量机 / 大豆 / 叶面积指数

Key words

UAV / vegetation index / regression analysis / support vector machine / soybean / leaf area index

引用本文

导出引用
王军 , 姜芸. 基于无人机多光谱遥感的大豆叶面积指数反演. 中国农学通报. 2021, 37(19): 134-142 https://doi.org/10.11924/j.issn.1000-6850.casb2020-0229
Wang Jun , Jiang Yun. Inversion of Soybean Leaf Area Index Based on UAV Multispectral Remote Sensing. Chinese Agricultural Science Bulletin. 2021, 37(19): 134-142 https://doi.org/10.11924/j.issn.1000-6850.casb2020-0229

参考文献

[1]
Chen J M, Cihlar J. Retrieving leaf area index of boreal conier forests using LandsatTM images[J]. Remote Sensing of Environment, 1996, 55(2):153-162.
[2]
李长春, 牛庆林, 杨贵军, 等. 基于无人机数码影像的大豆育种材料叶面积指数估测[J]. 农业机械学报, 2017, 48(8):147-158.
[3]
张彩霞, 付桢. 国际背景下中国大豆的生产困境分析与对策[J]. 河北经贸大学学报:综合版, 2020, 20(4):73-78.
[4]
阎广建, 胡容海, 罗京辉, 等. 叶面积指数间接测量方法[J]. 遥感学报, 2016, 20(5):958-978.
[5]
Alonzo M, Bookhagen B, McFadden J P, et al. Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometr[J]. Remote Sensing of Environment, 2015, 162(2):141-153.
[6]
贺佳, 郭燕, 王利军, 等. 基于作物生长监测诊断仪的玉米LAI监测模型研究[J]. 农业机械学报, 2019, 50(12):187-194.
[7]
Liu J, Pattey E, G Jégo. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons[J]. Remote Sensing of Environment, 2012, 123:347-358.
[8]
阎广建, 胡容海, 罗京辉, 等. 叶面积指数间接测量方法[J]. 遥感学报, 2016, 20(5):958-978.
[9]
蒙继华, 吴炳方, 李强子. 全国农作物叶面积指数遥感估算方法[J]. 农业工程学报, 2007, 23(2):160-167.
[10]
陈雪洋, 蒙继华, 杜鑫, 等. 基于环境星CCD数据的冬小麦叶面积指数遥感监测模型研究[J]. 国土资源遥感, 2010(2):55-58,62.
[11]
侯学会, 王猛, 梁守真, 等. 基于GF-1数据的冬小麦不同生育期叶面积指数反演[J]. 山东农业科学, 2018, 50(11):148-153.
[12]
Yue J, Yang G, Li C, et al. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models[J]. Remote Sensing, 2017, 9(7):708.
[13]
Feng W, Zhang H Y, Zhang Y S, et al. Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data[J]. Field Crops Research, 2016, 198:238-246.
[14]
姚雄, 余坤勇, 杨玉洁, 等. 基于随机森林模型的林地叶面积指数遥感估算[J]. 农业机械学报, 2017, 48(5):159-166.
[15]
Gray J, Song C. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors[J]. Remote Sensing of Environment, 2012, 119:173-183.
[16]
孙诗睿, 赵艳玲, 王亚娟, 等. 基于无人机多光谱遥感的冬小麦叶面积指数反演[J]. 中国农业大学学报, 2019, 24(11):51-58.
[17]
韩文霆, 彭星硕, 张立元, 等. 基于多时相无人机遥感植被指数的夏玉米产量估算[J]. 农业机械学报, 2020, 51(1):148-155.
[18]
陶惠林, 冯海宽, 杨贵军, 等. 基于无人机成像高光谱影像的冬小麦LAI估测[J]. 农业机械学报, 2020, 51(1):176-187.
[19]
林卉, 梁亮, 张连蓬, 等. 基于支持向量机回归算法的小麦叶面积指数高光谱遥感反演[J]. 农业工程学报, 2013, 29(11):139-146.
[20]
Yue J, Feng H, Jin X, et al. A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera[J]. Remote Sensing, 2018, 10(7):1138.
[21]
高林, 杨贵军, 王宝山, 等. 基于无人机遥感影像的大豆叶面积指数反演研究[J]. 中国生态农业学报, 2015, 23(7):868-876.
[22]
张东彦, Coburn C, 赵晋陵, 等. 基于多角度成像数据的大豆冠层叶绿素密度反演[J]. 农业机械学报, 2013, 44(2):205-213.
[23]
Rouse J W. Monitoring vegetation systems in the Great Plains with ERTS[C]. NASA. Goddard Space Flight Center 3 d ERTS-1 Symp, 1974.
[24]
Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology. 1969: 663-666.
[25]
Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309.
[26]
Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1):195-213.
[27]
陆国政, 李长春, 杨贵军, 等. 基于成像高光谱仪的大豆叶面积指数反演研究[J]. 大豆科学, 2016, 35(4):599-608.
[28]
刘佳, 王利民, 滕飞, 等. 玉米大豆轮作遥感监测技术研究[J]. 中国农学通报, 2017, 33(8):144-153.
[29]
牛庆林, 冯海宽, 杨贵军, 等. 基于无人机数码影像的玉米育种材料株高和LAI监测[J]. 农业工程学报, 2018, 34(5):73-82.
[30]
高林, 杨贵军, 于海洋, 等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016, 32(22):113-120.
[31]
张漫, 苗艳龙, 仇瑞承, 等. 基于车载三维激光雷达的玉米叶面积指数测量[J]. 农业机械学报, 2019, 50(6):12-21.
[32]
Omar V D, Zaman-Allah M A, Benhildah M, et al. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization[J]. Frontiers in Plant Science, 2016, 7.

基金

国家自然科学基金资助项目“基于光谱分类的区域土壤有机质遥感预测模型研究”(41501357)
黑龙江省自然科学基金“田块尺度黑土有机质遥感反演研究”(D20170001)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2291 KB)

Accesses

Citation

Detail

段落导航
相关文章

/