
磷肥对紫花苜蓿生产力影响的研究概述
Effects of Phosphorus Fertilizer on Alfalfa Productivity: A Review
随着畜牧业的发展,对苜蓿的种植生产提出了更高的要求。磷肥的有效利用是影响苜蓿生产力的关键因素之一。笔者系统概述了苜蓿缺磷的主要症状,不同地区施磷量和方法对苜蓿生产力的影响,施磷提升苜蓿生产力的途径,苜蓿的磷素吸收机制以及磷素与其他养分及水分互作对苜蓿生产的影响。建议今后针对不同地区的土壤理化性质,特别是有效磷含量,测土施肥,综合不同地区的结果建立气候-土壤-施肥模型,并进一步开展磷素促进苜蓿生长的生理和分子机制的研究,以期为苜蓿研究和产业发展提供有益信息。
With the development of animal husbandry, higher requirements are raised for the cultivation and production of alfalfa. The effective utilization of phosphate fertilizer is one of the key factors affecting alfalfa productivity. This paper outlined the main symptoms of alfalfa suffering phosphorus deficiency, the effects of phosphorus application levels and methods in different areas on alfalfa productivity, the ways to increase alfalfa productivity by phosphorus application, the mechanism of phosphorus absorption and the interaction effects among phosphorus and other nutrients, as well as water, on alfalfa production. It is suggested to measure soil for fertilization according to local soil physical and chemical properties, especially the available phosphorus content, to establish the climate-soil-fertilization model based on the results, and to study the physiological and molecular mechanisms of phosphorus promoting alfalfa growth. This paper could provide certain information for the development of alfalfa industry.
磷肥 / 紫花苜蓿 / 生产力 / 光合作用 / 根系生长 / 缺磷症状 / 氮磷钾配施 {{custom_keyword}} /
phosphate fertilizer / alfalfa / productivity / photosynthesis / root system growth / symptom of phosphorus deficiency / combined application of N,P,K {{custom_keyword}} /
[1] |
洪绂曾. 苜蓿科学[M]. 北京: 中国农业出版社, 2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
韩清芳, 贾志宽, 王俊鹏. 国内外苜蓿产业发展现状与前景分析[J]. 草业科学, 2005,22(3):22-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
朱兆良, 张福锁. 主要农田生态系统氮素行为与氮肥高效利用的基础研究[M]. 北京: 科学出版社, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
姜慧新, 刘栋, 翟桂玉, 等. 氮磷钾配合施肥对紫花苜蓿产草量的影响[J]. 草业科学, 2012,29(9):1441-1445.
配合施肥是充分发挥紫花苜蓿(Medicago sativa)植株生长潜能、提高其饲草产量的有效手段,为探索山东农区紫花苜蓿栽培的最佳施肥组合,在山东省齐河县畜牧科技示范园,采用三因子三水平正交试验设计,研究氮、磷、钾不同水平组合对紫花苜蓿饲草产量的影响。结果表明,氮肥和钾肥对紫花苜蓿饲草产量影响不显著(P>0.05),磷肥能显著提高紫花苜蓿饲草产量(P<0.05)。互作效应分析显示,氮肥和磷肥的互作效应对第1茬草、第2茬草和总产草量的影响显著,与低水平的氮肥配施,磷肥增产的效果明显。从总产草量看,在试验条件下,N、P2O5和K2O施用量为60、90和100 kg·hm-2的组合获得的饲草产量最高,是试验点最佳的施肥组合。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
奚振邦. 现代化肥肥料学[M]. 北京: 中国农业出版社, 2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
郝凤, 刘晓静, 齐敏兴, 等. 磷水平和接根瘤菌对紫花苜蓿根系形态特征和根瘤固氮特性的影响[J]. 草地学报, 2015,23(4):818-822.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
杨俊兴, 张彤, 吴冬秀. 磷素营养对植物抗旱性的影响[J]. 广东微量元素学, 2003(12):13-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
任卫波, 陈立波, 郭慧琴, 等. 紫花苜蓿耐寒越冬性研究进展[J]. 中国草地学报, 2008(2):104-108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
汪翠莲. 农作物常见缺磷诊断及防治措施[J]. 农技服务, 2008(7):61-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
邱敦莲. 几种主要作物的缺磷症状介绍[J]. 四川农业科技, 2001(3):28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
周长华. 主要作物的缺磷症状[J]. 吉林农业, 1994(6):17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
于铁峰, 刘晓静, 吴勇, 等. 西北干旱灌区紫花苜蓿高产田施肥效应及推荐施肥量研究[J]. 草业学报, 2019,28(8):15-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
孟凯, 李星月, 冀晓婷, 等. 氮、磷、钾配施对草原3号苜蓿干草产量的影响[J]. 中国草地学报, 2019,41(3):107-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
陈昱铭, 李倩, 王玉祥, 等. 氮、磷、钾肥对苜蓿产量、根瘤菌及养分吸收利用率的影响[J]. 干旱区资源与环境, 2019,33(7):174-180.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
孙艳梅, 刘选帅, 张前兵, 等. 施磷对滴灌苜蓿干草产量及磷素含量的影响[J]. 草业学报, 2019,28(3):154-163.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
于铁峰, 刘晓静, 郝凤. 施用磷肥对紫花苜蓿营养价值和氮磷利用效率的影响[J]. 草业学报, 2018,27(3):154-163.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
任灵通, 赵俊威, 吴新春, 等. 灌溉定额分配及水磷耦合对滴灌苜蓿生长规律的影响[J]. 新疆农业科学, 2018,55(1):164-174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
杨浩宏. 滴灌下施氮磷钾肥对苜蓿产量和品质的影响[D]. 塔里木大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
杨浩宏, 席琳乔, 王栋, 等. 滴灌条件下氮、磷、钾肥效应对紫花苜蓿草产量的影响[J]. 新疆农业科学, 2016,53(6):1099-1106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
肖向华. 氮、磷、钾配比施肥对紫花苜蓿产量、品质及根瘤菌数量的影响[D]. 新疆农业大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
张学洲, 兰吉勇, 张荟荟, 等. 不同施肥配比对多叶型紫花苜蓿产量、品质和效益的影响[J]. 现代农业科技, 2016(4):270-273.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
徐博, 刘卓, 王英哲, 等. 氮、磷、钾肥对紫花苜蓿草产量的影响[J]. 吉林农业科学, 2015,40(6):47-50,79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
李新乐, 穆怀彬, 侯向阳, 等. 水、磷对紫花苜蓿产量及水肥利用效率的影响[J]. 植物营养与肥料学报, 2014,20(5):1161-1167.
以福州市闽侯县白沙镇紫云英定位试验地为对象,研究了不同施肥模式下水稻产量、土壤养分、土壤可培养微生物数量、微生物量碳、氮以及土壤酶活性的变化及其相关性。试验设5个处理,对照(不施紫云英和化肥,CK),全量化肥(100% F),紫云英18000 kg/hm2+全量化肥(MV+100% F),紫云英18000 kg/hm2+60%化肥(MV+60% F),单施紫云英18000 kg/hm2(MV)。结果表明,与对照相比,施肥处理均能促进水稻增产;MV+60% F处理与100% F水稻产量无显著差异。化肥配施紫云英能够提高土壤有机质、全氮、有效氮、可培养微生物数量,微生物量碳、氮及土壤酶活性。相关性分析结果显示,土壤酶活性、微生物生物量与土壤氮素呈显著或极显著的正相关关系;土壤酶活性与水稻产量呈显著或极显著的正相关关系。综合水稻产量、土壤养分和微生物学特性等指标,可以看出,MV+60%F施肥模式有利于改善土壤质量,是一种高效节能的培肥模式。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
张进霞. 氮磷调控对紫花苜蓿生产性能及其土壤养分特性的影响[D]. 兰州:甘肃农业大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
霍海丽, 王琦, 张恩和, 等. 灌溉和施磷对紫花苜蓿干草产量及营养成分的影响[J]. 水土保持研究, 2014,21(1):117-121,126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
侯湃, 刘自学, 刘艺杉, 苏等. 北京平原区紫花苜蓿施肥组合试验[J]. 草业科学, 2014,31(1):144-149.
采用正交试验设计, 研究紫花苜蓿(Medicago sativa)氮、磷、钾肥最佳施肥组合及推荐施肥量。结果表明, 在土壤少氮、缺磷的地区, 氮、磷、钾肥配施能显著提高紫花苜蓿饲草产量、生长速度及再生速度, 饲草产量增幅在17.31%~29.28%。不同施肥处理下生长速度最快的肥料组合为处理6(N2P3K1), 即施氮肥50 kg·hm-2, 施磷肥280 kg·hm-2, 施钾肥0, 生长速度为2.44 cm·d-1, 显著高于不施肥对照(1.66 cm·d-1), 各施肥因子对生长速度的独立效应为P>N>K;不同施肥处理下再生速度最快的肥料组合为处理6, 再生速度为2.02 cm·d-1, 也显著高于不施肥对照(1.52 cm·d-1), 各施肥因子对再生速度的独立效应为P>N>K。当氮、磷、钾施肥组合为2∶2∶3时, 即N为50 kg·hm-2, P为140 kg·hm-2, K为160 kg·hm-2时可获得较高产量, 其施肥组合的增产率在29%以上, 各施肥因子对产量的独立效应为P>K>N。综合考虑认为, 本试验N、P、K的推荐施用量可为50 kg·hm-2≤N≤100 kg·hm-2, 0<P≤140 kg·hm-2, 0<K≤160 kg·hm-2。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
霍海丽, 王琦, 师尚礼, 等. 灌溉和施磷对紫花苜蓿分枝数、干草产量及水分利用效率的影响[J]. 土壤通报, 2013,44(4):905-911.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
伊亚莉, 刘树军, 李文红, 等. 磷、钾、硫肥配施对紫花苜蓿生产性能的影响研究[J]. 现代农业科技, 2013(8):261-264.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
杨俱和, 高继飞. 不同施磷水平对旱作陇东苜蓿种子产量和质量的影响[J]. 种子, 2012,31(12):68-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
范富, 徐寿军, 张庆国, 等. 氮、磷、钾肥配施对紫花苜蓿产量及营养物质含量的影响[J]. 中国土壤与肥料, 2011(2):51-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
胡华锋, 肖金帅, 郭孝, 等. 氮磷钾肥配施对黄河滩区紫花苜蓿产量和品质的影响[J]. 湖南农业大学学报:自然科学版, 2009,35(2):178-180,188.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
王泽环. 不同磷水平对黄花苜蓿产量和品质的影响[D]. 呼和浩特:内蒙古大学, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
于显双, 范富, 张永亮, 等. 氮、磷、钾肥配施对WL-232HQ苜蓿品种鲜草产量及营养成分的影响[J]. 土壤通报, 2008(1):100-105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
刘贵河, 章杏杏, 王堃, 等. 氮、磷、钾肥料配施对紫花苜蓿产量的影响[J]. 河北北方学院学报:自然科学版, 2005(4):38-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
温洋, 金继运, 黄绍文, 等. 不同磷水平对紫花苜蓿产量和品质的影响[J]. 土壤肥料, 2005,( 2):21-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
张积祥, 李松. 紫花苜蓿NP肥配施研究[J]. 草业科学, 1990,( 4):70-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
麦麦提敏·乃依木, 王玉祥, 张博. 施肥对新牧4号紫花苜蓿产量和品质的影响[J]. 草食家畜, 2018(5):43-47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
谢勇, 孙洪仁, 张新全, 等. 坝上地区紫花苜蓿氮、磷、钾肥料效应与推荐施肥量[A]. 中国草地学报, 2012,34(2):52-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
孙洪仁, 曹影, 刘琳, 等. 紫花苜蓿施肥的理论和技术[J]. 中国奶牛, 2017,8:55-59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
赵力兴, 高凯, 王显国, 等. 施肥量与施肥频率对紫花苜蓿茎秆直径及长度的影响[J]. 畜牧与饲料科学, 2018,39(5):57-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
Efficient phosphorus (P) management is important for alfalfa (Medicago sativa L.) seed production and is necessary in order to alleviate the negative environmental effects of excess P application. The study was conducted on both very low-P and optimum-P soils to evaluate the effects of two frequencies (annual and triennial applications), two depths (7-8 and 15-16 cm), and three rates (15, 30, and 45 kg P ha(-1)) of P fertilization on seed yield, total P uptake (TPU), P-use efficiency of applied P (PUE), and recovery of P fertilizer (PR). There was a zero-P control. Under the model of annual application, the highest seed yields were obtained with the rates of 30 or 45 kg P ha(-1). Under the model of triennial application, however, the seed yield decreased linearly with increasing rates in the first year. Averaged across frequency and depth, PUE and PR decreased linearly but TPU increased linearly with increasing P application rate. Triennial application of 45 kg of P led to higher mean seed yield than annual application of 15 kg of P, and its PUE and PR values were higher than triennial application of 90 and 135 kg of P. However, on low-P or optimum-P soil, annual application of 30 or 45 kg of P resulted in the highest mean seed yields compared with low PUE and PR. Thus, triennial application of a low P rate leads to a high alfalfa seed yield and has potential economic and environmental benefits.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
韩建国, 李鸿祥, 马春晖, 等. 施肥对草木樨生产性能的影响[J]. 草业学报, 2009(1):42-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
Tisdale,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
杨敏, 师尚礼. 紫花苜蓿根茎生长多样性研究[J]. 草原与草坪, 2016,6(5):21-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
陈艳, 乔璟, 沈益新. 春季紫花苜蓿根系性状与地上部生长性状的相关性分析[J]. 南京农业大学学报, 2012,35(1):108-112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
李申岩. 施磷对紫花苜蓿根颈芽形成动态及产草量的影响[D]. 哈尔滨:东北师范大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
侯思羽. 氮磷肥对紫花苜蓿芽库、产量及品质的影响[D]. 哈尔滨:东北师范大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
苏亚丽, 孙启忠, 张力君, 等. 水肥耦合对紫花苜蓿叶绿素含量和硝酸还原酶活性的影响[J]. 中国草地学报, 2011,33(3):52-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
温洋, 金继运. 施磷对紫花苜蓿光合特性以及生长的影响[J]. 中国土壤与肥料, 2007(6):34-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[60] |
齐敏兴, 刘晓静, 张晓磊, 等. 不同磷水平对紫花苜蓿光合作用和根瘤固氮特性的影响[J]. 草地学报, 2013,21(3):512-516.
采用砂培方法,在营养液条件下研究不同磷水平对甘农3号紫花苜蓿(Medicago sativa ‘Gannong No.3')光合作用和根瘤固氮特性的影响。结果表明:在其他营养充分供应的基础上,适当提高磷水平可以显著增大甘农3号紫花苜蓿叶片的气孔导度和光合速率,减小蒸腾速率,并提高叶片中叶绿素含量,增大叶面积,增加叶片数,同时使根瘤数目增多,根瘤重增加,固氮酶活性显著增强。光合作用在磷水平为1500 μmol·L-1时最强,此时叶片蒸腾速率为4.27 mmol·m-2·s-1,气孔导度为347.54 mmol·m-2·s-1,光合速率为10.37 μmol·mol-1,胞间CO2浓度为307.28 μmol·mol-1;叶绿素含量、叶面积和叶片数都随着磷水平的增大而呈现出先增大后减小的趋势,叶面积在磷水平为1500 μmol·L-1时达到最大值1.21 cm2;叶片数在磷水平为250 μmol·L-1时达到最大值26.50 个,继续增大磷浓度至1500 μmol·L-1时叶片数仍显著高于对照;根瘤数和根瘤重随磷水平的增大持续增大;固氮酶活性在磷水平为1500 μmol·L-1时最强达57.1 μg·g-1·h-1。综合考虑,磷水平在1500 μmol·L-1时为最佳值,过高或过低的磷水平都不利于甘农3号紫花苜蓿的正常生长发育。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[61] |
齐敏兴, 刘晓静, 张晓磊, 等. 不同磷水平对接种根瘤菌紫花苜蓿生长特性的影响[J]. 草原与草坪, 2013,33(1):51-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[62] |
Improved P and K nutrition can enhance yield and persistence of alfalfa (Medicago sativa L.) grown on low fertility soils, but it is unknown if the improved agronomic performance is associated with greater taproot N and C reserves. Our objective was to use cluster analysis to determine how alfalfa plant persistence is altered by P and K fertilization, and determine if changes in specific taproot C and/or N reserves were associated with alfalfa plant death. Taproots were dug and plants counted in May and December of each year and taproots analyzed for P, K, starch, sugar, amino-N, and soluble protein. K-means clustering was used to create six clusters that were subsequently compared using two-sample t-tests. Low K in herbage and taproots was associated with low yield and poor persistence of the Low and Very Low clusters and taproots of these plants generally had low starch, protein, and amino-N concentrations. Plants died primarily between May and December. Plant persistence of the low yielding, P-deficient Medium cluster was high and associated with high starch concentrations. Low amino-N concentrations in taproots may provide an early indication of potential plant death because these were evident in poor-persisting Low and Very Low clusters early in the study.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[63] |
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[64] |
Agricultural production is often limited by low phosphorus (P) availability. In developing countries, which have limited access to P fertiliser, there is a need to develop plants that are more efficient at low soil P. In fertilised and intensive systems, P-efficient plants are required to minimise inefficient use of P-inputs and to reduce potential for loss of P to the environment.
Three strategies by which plants and microorganisms may improve P-use efficiency are outlined: (i) Root-foraging strategies that improve P acquisition by lowering the critical P requirement of plant growth and allowing agriculture to operate at lower levels of soil P; (ii) P-mining strategies to enhance the desorption, solubilisation or mineralisation of P from sparingly-available sources in soil using root exudates (organic anions, phosphatases), and (iii) improving internal P-utilisation efficiency through the use of plants that yield more per unit of P uptake. We critically review evidence that more P-efficient plants can be developed by modifying root growth and architecture, through manipulation of root exudates or by managing plant-microbial associations such as arbuscular mycorrhizal fungi and microbial inoculants. Opportunities to develop P-efficient plants through breeding or genetic modification are described and issues that may limit success including potential trade-offs and trait interactions are discussed. Whilst demonstrable progress has been made by selecting plants for root morphological traits, the potential for manipulating root physiological traits or selecting plants for low internal P concentration has yet to be realised. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[65] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[66] |
Root architectural traits that increase topsoil foraging are advantageous for phosphorus acquisition but may incur tradeoffs for the acquisition of deep soil resources such as water. To examine this relationship, common bean genotypes contrasting for rooting depth were grown in the field and in the greenhouse with phosphorus stress, water stress and combined phosphorus and water stress. In the greenhouse, water and phosphorus availability were vertically stratified to approximate field conditions, with higher phosphorus in the upper layer and more moisture in the bottom layer. Under phosphorus stress, shallow-rooted genotypes grew best, whereas under drought stress, deep-rooted genotypes grew best. In the combined stress treatment, the best genotype in the greenhouse had a dimorphic root system that permitted vigorous rooting throughout the soil profile. In the field, shallow-rooted genotypes surpassed deep-rooted genotypes under combined stress. This may reflect the importance of early vegetative growth in terminal drought environments. Our results support the hypothesis that root architectural tradeoffs exist for multiple resource acquisition, particularly when resources are differentially localised in the soil profile. Architectural plasticity and root dimorphism achieved through complementary growth of distinct root classes may be important means to optimise acquisition of multiple soil resources.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[67] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[68] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[69] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[70] |
李源, 王赞, 高洪文, 等. 磷钾配合施肥对紫花苜蓿产量的影响[J]. 华北农学报, 2008,23(增刊):315-318.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[71] |
马宁, 李亚娇, 苏生, 等. 氮磷钾配施对北林202紫花苜蓿产量和品质的影响[J]. 草原与草坪, 2018,38(6):48-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[72] |
张富仓, 康绍忠, 李志军, 等. 施肥对旱地土壤供水特征的影响[J]. 沈阳农业大学学报, 2004,35(56):408-410.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[73] |
毕舒贻, 曹婿, 李跃, 等. 不同水肥组合对苜蓿品质的影响[J]. 草地学报, 2018,26(1):106-113.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |