施用不同剂型基质氮肥对玉米田氨挥发与氮肥利用率的影响

杨阳, 倪晓宇, 刘斌美, 陶亮之, 余立祥, 杨叶, 冯梦喜, 钟雯瑾, 吴跃进

中国农学通报. 2020, 36(24): 14-22

PDF(1308 KB)
PDF(1308 KB)
中国农学通报 ›› 2020, Vol. 36 ›› Issue (24) : 14-22. DOI: 10.11924/j.issn.1000-6850.casb20190600354
农学·农业基础科学

施用不同剂型基质氮肥对玉米田氨挥发与氮肥利用率的影响

作者信息 +

Matrix-based Nitrogen Fertilizers with Different Matrix-material Doses: Effects on Ammonia Volatilization and Nitrogen Use Efficiency in Maize Field

Author information +
History +

摘要

为探究不同剂型基质氮肥对玉米田氨挥发损失和氮肥利用率的影响,设置8种施肥处理,包括无氮对照、常规氮肥和6种剂型(1%~6%,按1%递增)基质氮肥,测定田间氨挥发、土壤矿质氮、玉米产量及构成要素、植株氮吸收量、氮肥生理效率、氮肥表观效率、氮肥农学效率等指标。研究表明:不同剂型基质氮肥处理的田间氨挥发总量比常规氮肥处理显著减少9.5%~45.9%。田间氨挥发量随基质材料添加量的提高而减少。与常规氮肥处理相比,2%~6%剂型基质氮肥处理显著提高吐丝期土壤矿质氮含量(增幅7.1%~17.8%)、籽粒产量(增幅5.2%~19.4%)、氮肥表观效率(增幅21.1%~55.0%)和氮肥农学效率(增幅22.5%~38.1%)。可见,施用基质材料添加量≥2%的基质氮肥,可减少玉米田间氨挥发、提高玉米籽粒产量和氮肥利用率。

Abstract

The paper aims to explore the effects of matrix-based nitrogen fertilizers with different matrix-material doses on ammonia volatilization and nitrogen use efficiency in the maize field. We set up 8 treatments including the control test, common nitrogen fertilizer, and 6 matrix-based nitrogen fertilizers (with 1%-6% matrix-materials, at a 1% interval) to measure the ammonia volatilization, soil inorganic nitrogen, maize yield and yield components, plant nitrogen uptake, nitrogen physiological efficiency, nitrogen recovery efficiency, and nitrogen agronomical efficiency and so on in the field. The results showed that: the total ammonia volatilization in matrix-based nitrogen fertilizer treatments in the field was 9.5%-45.9% lower than that in regular nitrogen fertilizer treatment; the ammonia volatilization in the field decreased with the increase of matrix-material dose; compared with regular nitrogen fertilizer treatment, matrix-based nitrogen fertilizer treatments with 2%-6% matrix-materials significantly increased soil inorganic nitrogen at silking stage by 7.1%-17.8%, grain yield by 5.2%-19.4%, nitrogen recovery efficiency by 21.1%-55.0%, and nitrogen agronomical efficiency by 22.5%-38.1%. Overall, the application of matrix-based nitrogen fertilizers with ≥2% matrix-materials could reduce ammonia volatilization in the maize field, increase maize grain yield, and improve the nitrogen use efficiency.

关键词

玉米 / 氮肥利用效率 / 土壤矿质氮 / 氨挥发 / 氮吸收 / 籽粒产量

Key words

Zea mays L. / nitrogen use efficiency / soil inorganic nitrogen / ammonia volatilization / nitrogen uptake / grain yield

引用本文

导出引用
杨阳 , 倪晓宇 , 刘斌美 , 陶亮之 , 余立祥 , 杨叶 , 冯梦喜 , 钟雯瑾 , 吴跃进. 施用不同剂型基质氮肥对玉米田氨挥发与氮肥利用率的影响. 中国农学通报. 2020, 36(24): 14-22 https://doi.org/10.11924/j.issn.1000-6850.casb20190600354
Yang Yang , Ni Xiaoyu , Liu Binmei , Tao Liangzhi , Yu Lixiang , Yang Ye , Feng Mengxi , Zhong Wenjin , Wu Yuejin. Matrix-based Nitrogen Fertilizers with Different Matrix-material Doses: Effects on Ammonia Volatilization and Nitrogen Use Efficiency in Maize Field. Chinese Agricultural Science Bulletin. 2020, 36(24): 14-22 https://doi.org/10.11924/j.issn.1000-6850.casb20190600354

0 引言

玉米(Zea mays L.)是重要的粮食和能源作物[1]。氮素营养对玉米生长至关重要。玉米生长季气温较高,会促进土壤氨挥发,加剧氮肥的挥发损失[2,3]。氨挥发会引起空气污染和氮沉降水体富营养化等问题[4,5]。为了降低氮肥对农业生态环境的影响,需要采取措施减少田间氨挥发、提高作物氮肥利用率[6,7]。研发应用新型缓释肥料是减少养分损失、提高作物养分利用率的重要途径[8,9]。新型缓释肥料有多种类型,例如基于表面阻隔原理的包膜肥料[10]、基于抑制剂的稳定性肥料[11]、基于絮凝材料的基质肥料[12]。其中,基质肥料具有如下特点:基质材料的絮凝效应可促进土壤形成微团聚体,具有减缓养分释放、改善微区土壤结构的作用[13];基质材料主要由天然黏土矿物改性制备,对土壤生态环境较为安全[13];基质材料的成本较低,生产的基质肥料具有价格优势,容易在农业生产中推广应用[14]
不同剂型基质肥料的肥效表现和生态环境效应存在差异。高剂量型基质肥料由于基质材料所占比例较大,在施入土壤后会发挥更强的絮凝缓释效果,但是也会导致肥料成本提高、有效养分降低[13,14]。了解基质肥料剂型对农田氮素损失和作物养分利用率的影响,可以为协调作物高效生产与生态环境安全提供依据。
Yang等[13]研究表明,在田间条件下,5%剂型基质肥料可提高玉米籽粒产量;在室内模拟试验条件下,5%剂型基质肥料可显著降低氨挥发潜力。Liu等[15]研究指出,基质肥料作为一类新型高效缓释肥料,即使将施用量降低为习惯施肥量的77%,仍可保持小麦(Triticum aestivum L.)不减产。邱冠男等[16]研究发现,施用基质肥料可使小麦增产4%以上。
然而,有关不同剂型基质肥料对玉米田间氨挥发和氮肥利用率的影响还缺乏系统研究。因此,本研究通过连续3年的田间试验,综合分析田间氨挥发与玉米氮肥利用率对基质氮肥剂型的响应,探究减少氨挥发、促进玉米氮肥高效利用的优化剂型,以期为提升基质氮肥肥效、改善农业生态环境提供科学借鉴。

1 材料与方法

1.1 试验时间、地点

田间试验于3个玉米生长季开展,即2016年6月23日—9月23日、2017年6月25日—9月29日、2018年6月15日—9月30日,在中国科学院合肥物质科学研究院新型肥料肥效试验基地(31°54′N,117°10′E;海拔27 m)进行。
试验区土壤为黄棕壤,耕层(0~20 cm)土壤基本理化性状为:土壤颗粒组成为黏粒(<2 μm) 491 g/kg,粉粒(2~20 μm) 413 g/kg,沙粒(20~2000 μm) 96 g/kg,土壤pH 6.44(土水比为1:2.5),田间持水量29.6%,土壤有机质含量21.1 g/kg,全氮含量0.93 g/kg,全磷含量1.27 g/kg,全钾含量15.8 g/kg,矿质氮含量14.9 mg/kg,速效磷含量6.9 mg/kg,速效钾含量122 mg/kg。在2016、2017、2018玉米生长季,总降水量分别为368.3、288.7、636.5 mm,日平均气温分别为27.4℃、26.8℃和27.1℃。

1.2 试验材料

试验所用玉米品种为‘FN476’(Zea mays L. ‘FN476’)。
供试氮肥为常规氮肥(常规尿素,含46.4% N)和不同剂型基质氮肥。基质氮肥以常规尿素为基本原料,通过添加不同剂量(6种剂型:1%~6%,按1%递增)的缓释基质材料生产。基质材料主要由改性蒙脱石和有机粘结剂组成,基质氮肥通过高塔造粒法生产[13]。试验所用磷肥为过磷酸钙(含16% P2O5),钾肥为硫酸钾(含50% K2O)。

1.3 试验方法

1.3.1 试验设计 田间试验包括8个处理,即无氮对照、常规氮肥和6种剂型(1%~6%,按1%递增)基质氮肥。试验小区按随机区组设计,每个处理设3次重复。小区面积为16 m2 (4 m×4 m),小区之间设置1.5 m宽走道。在施氮处理中,氮肥施用量均为195 kg/hm2。所有小区均施用磷肥和钾肥,其中,磷肥施用量为45 kg/hm2,钾肥施用量为45 kg/hm2。所有肥料在播种玉米前做基肥一次施入,先撒施然后翻耕混合到耕层(0~20 cm)。玉米按照株距30 cm、行距40 cm播种定苗。在玉米生长期间,按照常规方法进行田间病虫草管理。
1.3.2 田间氨挥发 自玉米施肥播种起,采用密闭气室氨检测仪法[17]测定田间氨挥发量,测定8:00—9:00和16:00—17:00 2个时间段的氨挥发速率,以两者的平均值作为当日平均氨挥发速率。以3日为1个区间计算3日累积氨挥发量,绘制氨挥发量变化曲线,统计玉米生长季氨挥发总量。
1.3.3 玉米产量与氮肥利用率 于成熟期收获计产,每小区随机采集20株(避开边行),按照玉米常规计产方法[13]分析穗粒数、千粒重和籽粒产量。每个小区随机抽取5株,通过烘干法计算含水量、换算干物质量。对烘干样品磨粉,充分混匀作为该小区的混合样品。植物样品采用浓硫酸消解法提取全氮,然后采用连续流动分析仪(德国Bran+Luebbe)测定器官全氮含量。
玉米植株氮吸收量以单位种植面积玉米干物质量和全氮含量的乘积计算[13]。玉米氮肥生理效率、表观效率和农学效率参照Fageria的方法计算[18],其中,氮肥表观效率为施氮处理玉米对所施氮肥的吸收比例(%);氮肥农学效率为单位施氮量对应的籽粒增产量(kg grain/kg N);氮肥生理效率为农学效率与表观效率的比值(kg grain/kg N)。
1.3.4 土壤矿质氮含量 于吐丝期在每个小区按照W形随机采集5个点的0~20 cm耕层土壤样品,充分混匀后按照四分法采回约1 kg混合样品作为该小区耕层土壤样品。对土壤样品采用1 mol/L氯化钾溶液浸提矿质氮(包括硝态氮和铵态氮)[13],然后采用连续流动分析仪(德国Bran+Luebbe)测定计算矿质氮含量。
1.3.5 统计分析 采用SAS 9.1软件进行方差分析,解析生长季和施肥处理对玉米和土壤参数的主效应和交互效应,对交互效应显著的参数采用逐年分析的方法进行多重比较(LSD法);对交互效应不显著的参数分别对生长季和施肥处理进行平均,只比较其主效应[19]

2 结果与分析

2.1 生长季和施肥处理的效应分析

方差分析结果(见表1)表明,生长季和施肥处理对田间氨挥发、玉米籽粒产量、穗粒数、千粒重、植株氮吸收量和氮肥生理效率具有显著主效应和交互效应(P<0.05或P<0.01);生长季和施肥处理对土壤矿质氮、玉米氮肥表观效率和农学效率具有显著主效应(P<0.01),但交互效应不显著(P>0.05)。
表1 生长季与施肥处理对玉米和土壤参数的影响
参数 生长季 施肥处理 交互效应
田间氨挥发 ** ** **
土壤矿质氮 ** ** ns
籽粒产量 ** ** **
穗粒数 ** ** **
千粒重 * ** **
植株氮吸收量 ** ** **
氮肥生理效率 ** ** **
氮肥表观效率 ** ** ns
氮肥农学效率 ** ** ns
注:ns,P>0.05;*,P<0.05;**,P<0.01。

2.2 田间氨挥发与土壤矿质氮

基质氮肥有降低玉米田间氨挥发的趋势(见图1)。多数处理的氨挥发峰值出现在施肥后的4~6天。在施肥后的1~12天,各剂型基质氮肥处理的氨挥发量均低于常规氮肥处理数值;在施肥后的12~27天,部分低添加量剂型基质氮肥(如:1%剂型)处理的氨挥发量高于常规氮肥;在施肥27天以后,各处理氨挥发量降低到低水平,且之间无显著差异。在各玉米生长季内,各剂型基质氮肥处理的氨挥发总量均显著低于常规氮肥处理数值(P<0.05),在2016、2017、2018年降低幅度分别为13.1%~45.9%、9.5%~45.1%和13.7%~39.4%。
图1 不同生长季与剂型基质氮肥对田间氨挥发和玉米吐丝期土壤矿质氮含量的影响
CK为无氮对照;RN为常规氮肥;MBN为基质氮肥(MBN后的百分数为基质材料添加剂量)。带有不同字母的均值具有显著差异。下同

Full size|PPT slide

生长季和施肥处理对玉米吐丝期土壤矿质氮含量的交互效应不显著(见表1),因此仅分析生长季和施肥处理的主效应。结果表明(见图1),2016、2017、2018年的玉米吐丝期土壤矿质氮含量平均值分别为18.8、19.5、16.2 mg N/kg。3个玉米生长季的土壤矿质氮含量存在显著差异,由高到低依次为2017>2016>2018(P<0.05)。不同施肥处理的玉米吐丝期土壤矿质氮含量平均值变化范围为13.9~19.9 mg N/kg。与常规氮肥处理相比,2%~6%剂型基质氮肥处理的土壤矿质氮含量显著提高7.1%~17.8%(P<0.05)。

2.3 籽粒产量与产量构成要素

基质氮肥有提高玉米籽粒产量的趋势(见图2)。在2016、2017、2018年,籽粒产量变化范围分别为4.16~6.83、3.52~6.02、5.39~8.29 t/hm2。2%~6%剂型基质氮肥处理的玉米籽粒产量显著高于常规氮肥处理数值(P<0.05),在2016、2017、2018年的提高幅度分别为5.2%~13.6%、8.3%~19.4%和5.4%~12.3%。1%剂型基质氮肥处理的玉米籽粒产量仅在2017年显著高于常规氮肥处理数值(P<0.05)。基质氮肥处理中,以4%剂型基质氮肥处理的玉米籽粒产量较高,但其数值在2016年与2%~6%剂型其他基质氮肥处理数值无显著差异(P>0.05),在2017年与2%和3%剂型基质氮肥处理数值无显著差异(P>0.05),在2018年与5%和6%剂型基质氮肥处理数值无显著差异(P>0.05)。
图2 不同剂型基质氮肥对玉米产量和产量构成要素的影响

Full size|PPT slide

高添加量剂型基质氮肥有提高玉米穗粒数的趋势(见图2)。在2016、2017、2018年,穗粒数变化范围分别为306~413、252~378、328~504。2016年,4%~6%剂型基质氮肥处理的玉米穗粒数高于常规氮肥处理数值,但差异未达到显著水平(P>0.05);2017年,4%和6%剂型基质氮肥处理的玉米穗粒数高于常规氮肥处理数值,但差异未达到显著水平(P>0.05);2018年,缓释基质材料添加量2%~6%的基质氮肥处理的玉米穗粒数显著高于常规氮肥处理数值(P<0.05)。
基质氮肥在2016和2017年有提高玉米千粒重的趋势(见图2)。在2016、2017、2018年,千粒重变化范围分别为162~205、168~211、194~198 g。2016年,3%~5%剂型基质氮肥处理的玉米千粒重显著高于常规氮肥处理数值(P<0.05);2017年,1%~5%剂型基质氮肥处理的玉米千粒重显著高于常规氮肥处理数值(P<0.05);但2018年,各施肥处理的玉米千粒重无显著差异(P>0.05)。

2.4 植株氮吸收量与氮肥生理效率

基质氮肥有提高玉米植株氮吸收量的趋势(见图3)。在2016、2017、2018年,植株氮吸收量变化范围分别为76~128、69~116、93~158 kg N/hm2。在2016-2018年,3%~6%剂型基质氮肥处理的玉米植株氮吸收量均显著高于常规氮肥处理数值(P<0.05)。在2017、2018年,2%剂型基质氮肥处理的玉米植株氮吸收量显著高于常规氮肥处理数值(P<0.05)。1%剂型基质氮肥处理的玉米植株氮吸收量与常规氮肥处理数值无显著差异(P>0.05)。
图3 不同剂型基质氮肥对玉米植株氮吸收量和氮肥生理效率的影响

Full size|PPT slide

多数基质氮肥处理没有改善玉米氮肥生理效率的作用(见图3)。在2016、2017、2018年,氮肥生理效率变化范围分别为63.7~71.6、58.2~82.2、95.1~127.9 kg grain/kg N。2016年,各施肥处理玉米氮肥生
理效率无显著差异(P>0.05);2017年,1%剂型基质氮肥处理的玉米氮肥生理效率显著高于常规氮肥处理数值(P<0.05),但其他5个剂型基质氮肥处理数值与常规氮肥处理数值无显著差异(P>0.05);2018年,各剂型基质氮肥处理玉米氮肥生理效率均低于常规氮肥处理数值。

2.5 氮肥表观效率与氮肥农学效率

生长季和施肥处理对玉米氮肥表观效率和氮肥农学效率的交互效应不显著(见表1),因此仅分析生长季和施肥处理的主效应。结果表明(见图4),2016、2017和2018年的玉米氮肥表观效率平均值分别为22.6%、20.2%和25.7%,氮肥农学效率平均值分别为15.1、14.1、28.7 kg grain/kg N。2018年的玉米氮肥表观效率和氮肥农学效率显著高于2016和2017年的数值(P<0.05)。不同施肥处理的玉米氮肥表观效率平均值变化范围为18.0%~27.9%,氮肥农学效率平均值变化范围为16.0~22.1 kg grain/kg N。与常规氮肥处理相比,2%~6%剂型基质氮肥处理的玉米氮肥表观效率显著提高21.1%~55.0%、氮肥农学效率显著提高22.5%~38.1%(P<0.05),且以4%和5%剂型基质氮肥处理的数值较高。
图4 不同生长季和施肥处理对玉米氮肥表观效率和氮肥农学效率的影响

Full size|PPT slide

3 结论与讨论

3.1 不同剂型基质氮肥对田间氨挥发和土壤矿质氮的影响

氨挥发是玉米田间氮素损失的重要形式[20]。农田氨挥发与土壤温湿度具有密切关系[21]。在玉米生长期间,田间温度和湿度较高,有利于氨挥发的发生[22]。减少玉米田间氨挥发损失对提高氮肥资源利用、降低生态环境污染风险具有重要意义[3]。施用缓/控释肥料是减少氨挥发损失的重要途径[23]。基质氮肥由于添加了具有絮凝团聚效应的基质材料,可以减缓肥料氮素向土壤溶液的释放,降低土壤溶液铵浓度,进而减轻氨挥发损失[24]。本研究发现,与常规氮肥处理相比,不同剂型基质氮肥处理可减少玉米田间氨挥发总量9.5%~45.9%。玉米田间氨挥发与基质氮肥剂型密切相关,1%~6%剂型基质氮肥处理的田间氨挥发总量均显著低于常规氮肥处理。玉米田间氨挥发总量随基质材料添加比例的提高而减少,为减少玉米田间氨挥发,应适当提高基质材料添加量。
吐丝期是决定玉米籽粒产量的关键时期,吐丝期土壤矿质氮含量是影响玉米产量的重要因素[13]。本研究证明,减少田间氨挥发损失有利于提高玉米吐丝期土壤矿质氮含量。对于基质材料添加量2%~6%的基质氮肥处理,其土壤矿质氮含量(玉米吐丝期)显著高于常规氮肥处理;不过,2%~6%剂型基质氮肥处理的土壤矿质氮含量之间无显著差异。从减少玉米田间氨挥发、提高土壤矿质氮含量方面考虑,基质氮肥的基质材料添加量应不低于2%。2018年的玉米吐丝期土壤矿质氮含量显著低于2016、2017年,原因可能是:2018年降水量明显较高,一方面促进氮素养分向深层土壤淋溶迁移,从而减少耕层土壤矿质氮含量;另一方面较好的水分条件促进玉米对耕层矿质氮素吸收利用,这可通过2018年较高的玉米植株氮吸收量和氮肥表观效率印证。由于水分条件对玉米氮素吸收利用具有重要影响[25,26],未来还需要开展试验,分析水分和基质氮肥剂型对田间氨挥发损失和土壤矿质氮含量的耦合机制。

3.2 不同剂型基质氮肥对玉米产量与氮肥利用率的影响

不同剂型基质氮肥的氮素缓释效果存在差异[14],进而可能影响作物氮素养分供应和产量性状。本研究发现,施肥处理和生长季对玉米籽粒产量、穗粒数和千粒重存在显著交互效应。该结果说明,通过调整基质氮肥剂型可以调控玉米产量性状,且调控效果与不同生长季环境条件(如:降水量)密切相关。本研究结果表明,优化基质氮肥剂型是促进玉米丰产的重要途径。为有效提高玉米籽粒产量,基质氮肥的基质材料添加量应不低于2%;在1%~6%的剂型范围内,可采用4%剂型以获得较高的玉米籽粒产量。
提高作物氮肥利用率可协同促进氮肥资源高效利用和生态环境安全[27,28]。相对常规氮肥,缓释氮肥的氮素释放特征更符合作物全生育期的养分需求规律,从而通常可改善作物氮肥利用率[29,30]。本研究发现,基质氮肥有提高玉米植株氮吸收量的趋势,为有效增加玉米植株氮吸收量,基质氮肥的基质材料添加量建议在3%以上。多数剂型基质氮肥对玉米氮肥生理效率没有明显促进作用。为有效改善玉米氮肥表观效率和农学效率,基质氮肥的基质材料添加量应不低于2%;在1%~6%的剂型范围内,可采用4%和5%剂型以获得较高的氮肥表观效率和农学效率。2018年的玉米氮肥表观效率和农学效率显著高于2016年和2017年数值,原因可能是:水分不足和氮素亏缺是影响玉米的两个重要限制因素[26,31],而2018年降水量较高,减轻了水分不足对玉米生长的限制作用,提高氮素营养对玉米生长的决定效应[32]

参考文献

[1]
Mueller N D, Gerber J S, Johnston M, et al. Closing yield gaps through nutrient and water management[J]. Nature, 2012,490(7419):254-257.
In the coming decades, a crucial challenge for humanity will be meeting future food demands without undermining further the integrity of the Earth's environmental systems(1-6). Agricultural systems are already major forces of global environmental degradation(4,7), but population growth and increasing consumption of calorie- and meat-intensive diets are expected to roughly double human food demand by 2050 (ref. 3). Responding to these pressures, there is increasing focus on 'sustainable intensification' as a means to increase yields on underperforming landscapes while simultaneously decreasing the environmental impacts of agricultural systems(2-4,8-11). However, it is unclear what such efforts might entail for the future of global agricultural landscapes. Here we present a global-scale assessment of intensification prospects from closing 'yield gaps' (differences between observed yields and those attainable in a given region), the spatial patterns of agricultural management practices and yield limitation, and the management changes that may be necessary to achieve increased yields. We find that global yield variability is heavily controlled by fertilizer use, irrigation and climate. Large production increases (45% to 70% for most crops) are possible from closing yield gaps to 100% of attainable yields, and the changes to management practices that are needed to close yield gaps vary considerably by region and current intensity. Furthermore, we find that there are large opportunities to reduce the environmental impact of agriculture by eliminating nutrient overuse, while still allowing an approximately 30% increase in production of major cereals (maize, wheat and rice). Meeting the food security and sustainability challenges of the coming decades is possible, but will require considerable changes in nutrient and water management.
[2]
Yang Y, Zhou C J, Li N, et al. Effects of conservation tillage practices on ammonia emissions from Loess Plateau rain-fed winter wheat fields[J]. Atmospheric Environment, 2015,104:59-68.
[3]
Zheng J S, Kilasara M M, Mmari W N, et al. Ammonia volatilization following urea application at maize fields in the East African highlands with different soil properties[J]. Biology and Fertility of Soils, 2018,54(3):411-422.
[4]
Jiang Y, Deng A X, Bloszies S, et al. Nonlinear response of soil ammonia emissions to fertilizer nitrogen[J]. Biology and Fertility of Soils, 2017,53(3):269-274.
[5]
Ruidisch M, Kettering J, Arnhold S, et al. Modeling water flow in a plastic mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon[J]. Agricultural Water Management, 2013,116:204-217.
[6]
Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013,494(7438):459-462.
China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen(1,2). These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity(1,3-5). However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen Per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s(6), before the introduction of mitigation measures(7,8). Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized crop-lands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.
[7]
杨清龙, 刘鹏, 董树亭, 等. 有机无机肥配施对夏玉米氮素气态损失及籽粒产量的影响[J]. 中国农业科学, 2018,51(13):2476-2488.
目的】本研究在定位试验平台上监测了不同施肥处理夏玉米田NH3和N2O的排放规律及其损失量,以探讨减少黄淮海区域夏玉米田氮素气态损失的有效途径,为提高夏玉米籽粒产量及肥料利用效率提供理论依据。【方法】2016—2017年利用水肥渗漏研究池进行试验,以郑单958(ZD958)为材料,以不施氮肥(CK)为对照处理,在同等施氮量下设置单施尿素(U1)、单施牛粪(M1)和尿素牛粪1﹕1配施(U2M2)3种氮肥处理。采用通气法和静态箱-气相色谱法研究了不同施肥处理对玉米田NH3和N2O排放规律和损失量、籽粒产量及氮肥利用效率的影响。【结果】玉米田氮素气态损失以NH3挥发为主,占氮素气态损失量的88.55%—96.42%,N2O排放量较少。不同施肥处理显著影响NH3和N2O排放量及氮素利用效率。U1处理NH3挥发量最高,两年平均为38.19 kg·hm-2;以M1处理最低,为19.10 kg·hm-2,U2M2处理介于两者之间,施用有机肥的M1或U2M2处理可以显著降低NH3挥发损失量。N2O排放氮素损失以M1处理最高,平均达到1.65 kg·hm-2,较U1和U2M2处理分别提高了77.42%和34.15%。2016—2017年不同施肥处理间籽粒产量差异显著,表现为U2M2>U1>M1>CK,2016年U2M2处理籽粒产量较U1和M1处理分别提高了3.45%和5.25%,U1和M1处理之间籽粒产量无明显差异;2017年U2M2处理籽粒产量较U1和M1处理分别提高了5.83%和12.53%,U1显著高于M1处理,提高了6.33%。氮素利用效率以U2M2处理最高,平均为58.20%,较M1和U1处理分别提高了32.15%和15.13%。【结论】有机无机肥配施增加了干物质和氮素积累量,提高了夏玉米籽粒产量和氮素利用效率,较单施尿素氨挥发减少,较单施有机肥N2O排放降低,是实现增产增效的合理施肥方式。
[8]
谢迎新, 刘园, 靳海洋, 等. 施氮模式对砂质潮土氨挥发、夏玉米产量及氮肥利用率的影响[J]. 玉米科学, 2015,23(2):124-129.
[9]
周丽平, 杨俐苹, 白由路, 等. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响[J]. 植物营养与肥料学报, 2016,22(6):1449-1457.
[10]
Geng J B, Ma Q, Chen J Q, et al. Effects of polymer coated urea and sulfur fertilization on yield, nitrogen use efficiency and leaf senescence of cotton[J]. Field Crops Research, 2016,187:87-95.
[11]
Pan B B, Lam S K, Mosier A, et al. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synjournal[J]. Agriculture Ecosystems & Environment, 2016,232:283-289.
[12]
张晓冬, 史春余, 隋学艳, 等. 基质肥料缓释基质的筛选及其氮素释放规律[J]. 农业工程学报, 2009,25(2):62-66.
为提高基质肥料的缓释性能,该文选用10种有机和无机基质制备基质肥料,通过砂柱间歇淋洗的方法研究了基质肥料的氮素释放规律,并根据Logistic方程的参数和氮素释放拐点的UPGMA聚类分析评价了10种基质的缓释效果,结果表明:基质肥料氮素累积释放率随时间的动态变化可用一级动力学方程、Elovich方程、抛物线扩散方程和Logistic方程表征,其中以Logistic方程拟合效果最好,这说明定量描述氮素养分释放规律的方程中以Logistic方程评价更具有实效性,而有机基质中氧化淀粉和木质素的缓释效果较好,无机基质中膨润土的缓释效果最好。
[13]
Yang Y, Ni X, Zhou Z, et al. Performance of matrix-based slow-release urea in reducing nitrogen loss and improving maize yields and profits[J]. Field Crops Research, 2017,212:73-81.
[14]
Ni X, Wu Y, Wu Z, et al. A novel slow-release urea fertiliser: Physical and chemical analysis of its structure and study of its release mechanism[J]. Biosystems Engineering, 2013,115(3):274-282.
Reducing the release rate of urea can increase its efficiency of use and reduce nitrogen pollution. A slow-release urea (S-urea) was produced using a new method; a bentonite and organic polymer (OP) were used to form a three-dimensional lattice structure by melting urea directly. The structure affected the recrystallisation of urea and increased its stacking density. The specific surface area of S-urea was 0.046 m(2) g(-1), much lower than that of common urea (1.698 m(2) g(-1) The static release experiment showed that 75% of 12 g sample of S-urea was released in 11 water for about 14 h, much longer than that of common urea (<0.5 h). The kinetic simulation results showed that the release of S-urea was not based on Fickian diffusion but underwent anomalous diffusion with its release rate was mainly affected by the dissolving-eroding process of the medium which was controlled by the compactness of the lattice structure. This process may be strengthened by increasing the amount of bentonite. (C) 2013 IAgrE. Published by Elsevier Ltd.
[15]
Liu R H, Kang Y H, Pei L, et al. Use of a new controlled-loss-fertilizer to reduce nitrogen losses during winter wheat cultivation in the danjiangkou reservoir area of China[J]. Communications in Soil Science and Plant Analysis, 2016,47(9):1137-1147.
[16]
邱冠男, 吴跃进, 王永国, 等. 新型高效控失型复合肥对黄淮海地区小麦量的影响[J]. 中国农学通报, 2010,26(18):186-191
黄淮海地区是我国重要的小麦生产基地,在该地区使用新型高效控缓释对提高化肥利用效率,增加小麦单产具有重要作用。本试验在安徽、河南、山东和河北四省通过对等量和减量施用控失型复合肥和普通化肥的小麦产量比较,分析新型高效化肥对小麦的产量、产量构成、氮肥农学利用率的影响。结果表明,不施肥处理小麦产量360.30kg/667m2,施肥可以提高产量2-3成,是该区小麦增产的重要措施;在等养分施肥试验,控失型复合肥平均单产511.80 kg/667m2,较普通复合肥491.00 kg/667m2增产4.20%,氮肥农学利用率提高14.71%。从产量结构分析可以看出,控失型复合肥增产主要通过提高小麦亩穗数和成穗率来实现;减量试验显示,控失型复合肥较普通复合肥在平均氮肥减少28%的情况下,控失复合肥与普通复合肥平均单产分别是500.13kg/667m2和500.75 kg/667m2,产量几乎相平,其氮肥农学利用率提高36.59%。结果表明控失型复合肥是一种原理独特、高效的新型控缓释化肥。
[17]
Yang Y, Ni X, Liu B, et al. Measuring field ammonia emissions and canopy ammonia fluxes in agriculture using portable ammonia detector method[J]. Journal of Cleaner Production, 2019,216:542-551.
[18]
Fageria N K, Moreira A, Moraes L A C, et al. Nitrogen uptake and use efficiency in upland rice under two nitrogen sources[J]. Communications in Soil Science and Plant Analysis, 2014,45(4):461-469.
Upland rice is an important crop in South America, including Brazil. Nitrogen (N) is one of the most yield-limiting nutrients in upland rice production in Brazil. A greenhouse experiment was conducted to evaluate N uptake and use efficiency as influenced by N sources. The soil used in the experiment was an Oxisol. The N sources were ammonium sulfate and urea, and N rates were 0, 50, 100, 150, 300, and 400 mg kg(-1) of soil. Nitrogen concentrations in the root, shoot, and grain were significantly influenced by N sources. The N rate and N source significantly influenced the N uptake in root, shoot, and grain. Similarly, nitrogen rate by N source interaction was also significant for N uptake in the root, shoot, and grain, indicating N source has a significant influence on uptake of N. Overall, concentration (content per unit dry weight) of N was greater in the grain, followed by root and shoot. Agronomical efficiency, apparent recovery efficiency, and utilization efficiency of N were significantly influenced by N rate and varied with N sources. However, physiological and agrophysiological efficiencies were only influenced significantly by N sources. Overall, N recovery efficiency was 33% for ammonium sulfate and 37% for urea. Hence, the large amount of N lost from soil-plant system may be by denitrification or voltilization.
[19]
冷寿慈. 生物统计与田间试验设计[M]. 北京: 中国广播电视出版社, 1992:269-270.
[20]
Drury C F, Yang X M, Reynolds W D, et al. Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields[J]. Journal of Environmental Quality, 2017,46(5):939-949.
Less than 50% of applied nitrogen (N) fertilizer is typically recovered by corn ( L.) due to climatic constraints, soil degradation, overapplication, and losses to air and water. Two application methods, two N sources, and two inhibitors were evaluated to reduce N losses and enhance crop uptake. The treatments included broadcast urea (BrUrea), BrUrea with a urease inhibitor (BrUrea+UI), BrUrea with a urease and a nitrification inhibitor (BrUrea+UI+NI), injection of urea ammonium nitrate (InjUAN), and injected with one or both inhibitors (InjUAN+UI, InjUAN+UI+NI), and a control. The BrUrea treatment lost 50% (64.4 kg N ha) of the applied N due to ammonia volatilization, but losses were reduced by 64% with BrUrea+UI+NI (23.0 kg N ha) and by 60% with InjUAN (26.1 kg N ha). Ammonia losses were lower and crop yields were greater in 2014 than 2013 as a result of the more favorable weather when N was applied in 2014. When ammonia volatilization was reduced by adding a urease inhibitor, NO emissions were increased by 30 to 31% with BrUrea+UI and InjUAN+UI compared with BrUrea and InjUAN, respectively. Pollution swapping was avoided when both inhibitors were used (BrUrea+UI+NI, InjUAN+UI+NI) as both ammonia volatilization and NO emissions were reduced, and corn grain yields increased by 5% with BrUrea+UI+NI and by 7% with InjUAN+UI+NI compared with BrUrea and InjUAN, respectively. The combination of two N management strategies (InjUAN+UI+NI) increased yields by 19% (12.9 t ha) compared with BrUrea (10.8 t ha).
[21]
杨阳, 李娜, 王林权, 等. 垄作对降低黄土高原南部冬小麦田氨挥发风险的影响[J]. 环境科学研究, 2015,28(3):431-439.
[22]
张翀, 韩晓阳, 李雪倩, 等. 川中丘陵区紫色土冬小麦/夏玉米轮作氨挥发研究[J]. 中国生态农业学报, 2015,23(11):1359-1366.
大气中过量的氨会造成诸多环境问题并危害人类健康。我国农田氮肥施用后的氨挥发是一个重要的氨排放源。紫色土的土壤性质以及该区的气候条件导致其氨挥发潜力较大。与其他集约化农作区相比, 该区农田氨挥发研究相对较少。本文探讨了川中丘陵区紫色土冬小麦/夏玉米轮作体系氨挥发情况, 为开展陆地生态系统大气碳氮气体交换研究提供基础数据, 同时也为氨排放清单的编制及农田氨减排措施研究提供依据。选取川中紫色土丘陵区典型的坡耕地作为研究对象, 采用风洞法研究了紫色土冬小麦/夏玉米轮作体系的氨挥发动态过程。每次试验设置1个施肥处理, 3次重复。风速、风向、大气温湿度、土壤温湿度等气象数据由试验田微型气象站获取。每隔2~3 d采集土壤样品用以测定土壤NH4+-N含量。两年的田间试验结果表明, 受氮肥深施及低温的影响, 冬小麦季氨挥发损失率明显低于夏玉米季; 2013年和2014年冬小麦季氨挥发损失率分别为7.4%和8.8%; 2013年夏玉米季三叶期氮肥撒施的氨挥发速率为34.1%; 2014年夏玉米季三叶期氮肥条施覆土降低了氨挥发损失, 损失率为21.4%; 2014年夏玉米季十叶期出现极端干旱的气候条件, 撒施氮肥后立即灌水使氨挥发损失率高达46.6%, 这是由于干旱条件下施肥灌水提供了利于氨挥发的土壤水分条件。因此在极端干旱的气候条件下, 应避免采用此施肥方式。综合分析两年的数据可得: 紫色土冬小麦季氨挥发损失占施氮量的(8.1±1.0)%, 夏玉米氨挥发损失占施氮量的(32.8±1.8)%。
[23]
侯朋福, 薛利祥, 俞映倞, 等. 缓控释肥侧深施对稻田氨挥发排放的控制效果[J]. 环境科学, 2017,38(12):5326-5332.
[24]
Yang Y, Yu L, Ni X, et al. Reducing nitrogen loss and increasing wheat profits with low-cost, matrix-based, slow-release urea[J]. Agronomy Journal, 2018,110(1):380-388.
[25]
Han K, Zhou C, Sheng H, et al. Agronomic improvements in corn by alternating nitrogen and irrigation to various plant densities[J]. Agronomy Journal, 2015,107(1):93-103.
[26]
王林权, 周春菊. 夏玉米水肥异区交替灌溉施肥的产量与环境效应研究进展[J]. 植物营养与肥料学报, 2017,23(6):1651-1658.
[27]
李欠欠, 李雨繁, 高强, 等. 传统和优化施氮对春玉米产量、氨挥发及氮平衡的影响[J]. 植物营养与肥料学报, 2015,21(3):571-579.
【目的】 本文通过在陕西省长武县(CW)和吉林省梨树县(LS)的春玉米田间试验,研究了传统和优化施氮对春玉米产量、土壤氨挥发及氮平衡的影响,以探讨春玉米氮肥优化的潜力及其对农田氨减排的效果。【方法】 试验设对照、传统施氮(长武N 250 kg/hm2, 梨树N 300 kg/hm2)及优化施氮(N 200 kg/hm2)3个处理,分别以N0、Ncon、Nopt表示。氨挥发采用德尔格氨管法(简称DTM法)进行原位测定,通过田间气象因素的校正计算氨挥发累积量。【结果】 长武和梨树点不同施氮处理下春玉米的产量结果表明,除对照(长武7.9 t/hm2、 梨树3.8 t/hm2)外,传统和优化施氮处理间均无显著差异(长武10.6~10.8 t/hm2, 梨树9.5~9.6 t/hm2)。玉米氮肥利用率表现为优化施氮(44.3%~44.5%)显著高于传统施氮(33.6%~36.4%),其中长武点氮肥利用率提高了8.1个百分点,梨树点氮肥利用率增加了10.7个百分点。氨挥发田间监测结果显示,基肥翻耕入土后,伴随降雨的产生,长武和梨树点均未产生氨挥发。喇叭口追肥期表施氮肥后,长武和梨树点均产生大量氨挥发(占追施尿素氮量的16%~22%),减少追肥用量N 30 kg/hm2(长武点)和N 100 kg/hm2(梨树点)能显著减少氨挥发损失N 8和15 kg/hm2。土壤-春玉米系统氮平衡估算的结果显示,与长武点氮素表观矿化N 97 kg/hm2相比,梨树点仅为N 16 kg/hm2。优化施氮比传统施氮处理显著降低表观氮素盈余N 48~88 kg/hm2。长武点各施氮处理的表观氮素盈余中,约46%的氮素残留在0—1 m的土壤中,54%损失到环境中,氨挥发占总损失的15%~30%;梨树点表观氮素盈余中,35%损失到环境中,其中氨挥发占总损失的54%~75%,约有65%残留在0—1m的土壤中。梨树点传统施氮处理0—1 m土层的氮素残留达N 140 kg/hm2,部分残留在土壤中的氮素也将面临淋洗、硝化和反硝化等损失的风险。与优化施氮相比传统施氮氮素表观损失增加了约N 30~40 kg/hm2,除氨挥发损失外,淋洗和硝化/反硝化等也是土壤-春玉米系统中不可忽视的氮素损失途径。【结论】 我国春玉米主产区农民传统的氮肥用量偏高,增产效应不明显,氮肥损失风险加剧,尤其是氨挥发损失较大,氮肥的优化潜力高达20%~33%,相当于可减少施氮N 50~100 kg/hm2
[28]
尹飞, 王俊忠, 孙笑梅, 等. 夏玉米根系与土壤硝态氮空间分布吻合度对水氮处理的响应[J]. 中国农业科学, 2017,50(11):2166-2178.
【目的】根系是玉米吸收氮素营养的主要器官。在大田条件下,对夏玉米根系生长分布、根系与土壤硝态氮空间吻合度对不同水氮处理的响应,以及根系与土壤硝态氮空间吻合度指标的有效性进行研究,用以了解其时空分布及与土壤氮分布的吻合情况对玉米氮素吸收利用的影响。【方法】2011—2015年,设置不灌水+不施氮(W0N0)、不灌水+300 kg N·hm-2W0N1)、不灌水+360 kg N·hm-2W0N2)、大喇叭口期灌水+不施氮(W1N0)、大喇叭口期灌水+300 kg N·hm-2W1N1)、大喇叭口期灌水+360 kg N·hm-2W1N2)共6个水氮处理。各施氮处理下拔节期施氮30%、大喇叭口期施氮70%。大喇叭口期灌水量为750 m3·hm-2。在2015年玉米生长季,分别于玉米拔节期、大喇叭口期、吐丝期、吐丝后20 d和成熟期在玉米种植行和行间采集0—50 cm土体样品(每10 cm一层),测定夏玉米根长密度、根干重密度、土壤硝态氮含量,并计算根系与土壤硝态氮空间吻合度。在成熟期采集植株样品,分析玉米氮素吸收量。【结果】随着玉米生育进程,种植行和行间0—50 cm土壤剖面夏玉米根长密度、根干重密度和硝态氮含量均表现出先升高后降低的趋势,根长密度和根干重密度峰值出现在吐丝后20 d,而土壤硝态氮含量峰值出现在大喇叭口期。在0—360 kg·hm-2的范围内,夏玉米根长密度和吐丝期之前土壤硝态氮含量随施氮量的增加而增加,但玉米根干重密度和吐丝期之后土壤硝态氮含量先升高后降低,峰值出现在施氮300 kg·hm-2处理。大喇叭口期灌水可以提高夏玉米生育后期根长密度和根干重密度,但降低了土壤硝态氮含量。随着土层加深,种植行夏玉米根长密度与土壤硝态氮空间吻合度(RLD1-N)以及根干重密度与土壤硝态氮空间吻合度(RWD1-N)总体呈降低趋势,行间夏玉米根长密度与土壤硝态氮空间吻合度(RLD2-N)以及根干重密度与土壤硝态氮空间吻合度(RWD2-N)总体呈先增加后降低趋势,峰值出现在10—30 cm土层。随着玉米生育进程,各土层RLD1-N、RWD1-N和RWD2-N以及0—40 cm土层RLD2-N呈先升高后降低变化趋势。与不施氮处理相比,施用氮肥提高了RLD1-N、RLD2-N、RWD1-N和RWD2-N。施氮量从300 kg·hm-2增加至360 kg·hm-2时,降低了0—30 cm土层RLD2-N、0—20 cm土层RWD1-N以及拔节至吐丝期间RLD1-N和0—20 cm土层RWD2-N,提高了40—50 cm土层RLD2-N、20—50 cm土层RWD1-N以及吐丝期之后的RLD1-N和RWD2-N。夏玉米种植行和行间根长密度和根干重密度与其硝态氮含量的吻合度与产量极显著正相关,但与氮素利用效率极显著负相关,且其相关性优于根长密度和根干重密度与产量及氮素利用效率的相关性。【结论】在大田条件下,施用氮肥可以提高夏玉米根长密度、根干重密度、土壤硝态氮含量以及夏玉米根系与土壤硝态氮空间吻合度。但施氮量超过300 kg·hm-2时会降低夏玉米生育前期上部土层的夏玉米根系与土壤硝态氮空间吻合度。根系与土壤硝态氮空间吻合度可以作为研究夏玉米氮素利用效率的有效指标。
[29]
Sabahi H, Jamian S S, Ghashghaee F. Assessment of urea coated with pomegranate fruit powder as N slow-release fertilizer in maize[J]. Journal of Plant Nutrition, 2016,39(14):2092-2099.
[30]
吴振宇, 周子军, 杨阳, 等. 新型缓释尿素的缓释特性及其在土壤中转化研究[J]. 中国农学通报, 2018,34(6):84-90.
[31]
Guo L W, Ning T Y, Nie L P, et al. Interaction of deep placed controlled-release urea and water retention agent on nitrogen and water use and maize yield[J]. European Journal of Agronomy, 2016,75:118-129.
[32]
Liu C A, Zhou L M, Jia J J, et al. Maize yield and water balance is affected by nitrogen application in a film-mulching ridge-furrow system in a semiarid region of China[J]. European Journal of Agronomy, 2014,52:103-111.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha(-1) applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0-200 cm soil layer but soil water content also increased in the 0-160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0-160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha(-1) and WUE ranged from 18.2 to 28.2 kg ha(-1) mm(-1). In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha(-1) and WUE from 3.5 to 6.5 kg ha(-1) mm(-1). The potential maximum grain yield for maize was 6784 kg ha(-1) with 360 kg N ha(-1) applied for four years, but considerable NO3-N accumulated in the soil profile. A lesser application (110 kg N ha(-1)) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge-furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha(-1) and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment. (C) 2013 Elsevier B.V.

基金

国家重点研发计划“江淮中部农田耕作改土培肥与粮食作物水肥互促节水保肥关键技术研究”(2017YFD0301302)
国家自然科学基金项目“灌溉和缓释尿素对水稻全生育期冠层氨通量的调控机制”(31601828)
中国科学院科技服务网络计划(STS)项目“河南粮食生产减肥增效示范”(KFJ-STS-QYZD-008)
安徽省科技重大专项“秸秆直接还田水稻品种选育及其示范推广”(18030701205)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1308 KB)

46

Accesses

0

Citation

Detail

段落导航
相关文章

/